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Basic Principles of Modeling Physical Networks

1-2

In this section...

“Overview of the Physical Network Approach to Modeling Physical Systems” on page 1-
2

“Variable Types” on page 1-4

“Building the Mathematical Model” on page 1-5
“Direction of Variables” on page 1-6

“Connector Ports and Connection Lines” on page 1-8

Overview of the Physical Network Approach to Modeling
Physical Systems

Simscape software is a set of block libraries and special simulation features for modeling
physical systems in the Simulink® environment. It employs the Physical Network
approach, which differs from the standard Simulink modeling approach and is particularly
suited to simulating systems that consist of real physical components.

Simulink blocks represent basic mathematical operations. When you connect Simulink
blocks together, the resulting diagram is equivalent to the mathematical model, or
representation, of the system under design. Simscape technology lets you create a
network representation of the system under design, based on the Physical Network
approach. According to this approach, each system is represented as consisting of
functional elements that interact with each other by exchanging energy through their
ports.

These connection ports are nondirectional. They mimic physical connections between
elements. Connecting Simscape blocks together is analogous to connecting real
components, such as pumps, valves, and so on. In other words, Simscape diagrams mimic
the physical system layout. If physical components can be connected, their models can be
connected, too. You do not have to specify flow directions and information flow when
connecting Simscape blocks, just as you do not have to specify this information when you
connect real physical components. The Physical Network approach, with its Through and
Across variables and nondirectional physical connections, automatically resolves all the
traditional issues with variables, directionality, and so on.

The number of connection ports for each element is determined by the number of energy
flows it exchanges with other elements in the system, and depends on the level of
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idealization. For example, a fixed-displacement hydraulic pump in its simplest form can be
represented as a two-port element, with one energy flow associated with the inlet
(suction) and the other with the outlet. In this representation, the angular velocity of the
driving shaft is assumed constant, making it possible to neglect the energy exchange
between the pump and the shaft. To account for a variable driving torque, you need a
third port associated with the driving shaft.

An energy flow is characterized by its variables. Each energy flow is associated with two
variables, one Through and one Across (see “Variable Types” on page 1-4 for more
information). Usually, these are the variables whose product is the energy flow in watts.
They are called the basic, or conjugate, variables. For example, the basic variables for
mechanical translational systems are force and velocity, for mechanical rotational systems
—torque and angular velocity, for hydraulic systems—flow rate and pressure, for
electrical systems—current and voltage.

The following example illustrates a Physical Network representation of a double-acting
hydraulic cylinder.

Ve

NI

F4 frz

The element is represented with three energy flows: two flows of hydraulic energy
through the inlet and outlet of the cylinder and a flow of mechanical energy associated
with the rod motion. It therefore has the following three connector ports:

* A — Hydraulic conserving port associated with pressure p; (an Across variable) and
flow rate q; (a Through variable)

* B — Hydraulic conserving port associated with pressure p, (an Across variable) and
flow rate g, (a Through variable)

* R — Mechanical translational conserving port associated with rod velocity v; (an
Across variable) and force F; (a Through variable)

1-3
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See “Connector Ports and Connection Lines” on page 1-8 for more information on
connector port types.

Variable Types
Physical Network approach supports two types of variables:

* Through — Variables that are measured with a gauge connected in series to an
element.

* Across — Variables that are measured with a gauge connected in parallel to an
element.

The following table lists the Through and Across variables associated with each type of
physical domain in Simscape software:

Physical Domain Across Variable Through Variable
Electrical Voltage Current
Hydraulic Pressure Flow rate
Magnetic Magnetomotive force (mmf) Flux
Mechanical rotational Angular velocity Torque
Mechanical translational Translational velocity Force
Gas Pressure and temperature = Mass flow rate and energy
flow rate
Moist Air Pressure, temperature, Mixture mass flow rate,
specific humidity (water mixture energy flow rate,
vapor mass fraction), and water vapor mass flow rate,
trace gas mass fraction and trace gas mass flow rate
Thermal Temperature Heat flow
Thermal liquid Pressure and temperature = Mass flow rate and energy
flow rate
Two-phase fluid Pressure and specific Mass flow rate and energy
internal energy flow rate

Note Generally, the product of each pair of Across and Through variables associated with
a domain is power (energy flow in watts). The exceptions are magnetic domain (where the
product of mmf and flux is not power, but energy), and the thermodynamic domains (gas,
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moist air, thermal liquid, and two-phase fluid), where products of variable pairs are not
power. These result in a pseudo-bond graph.

Building the Mathematical Model

Through and Across variables associated with all the energy flows form the basis of the
mathematical model of the block.

W3

NI

F4 =

For example, the model of a double-acting hydraulic cylinder shown in the previous
illustration can be described with a simple set of equations:

F3=p;-A1—py- Ay

Q1 =A1"v3

Q@ =A V3
where
41,42 Flow rates through ports A and B, respectively (Through variables)
P1.P2 Gauge pressures at ports A and B, respectively (Across variables)
AA; Piston effective areas
F; Rod force (Through variable)
V3 Rod velocity (Across variable)

The model could be considerably more complex, for example, it could account for friction,
fluid compressibility, inertia of the moving parts, and so on. For all these different
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mathematical models, however, the element configuration (that is, the number and type of
ports and the associated Through and Across variables) would remain the same, meaning
that the Physical Network approach lets you substitute models of different levels of
complexity without introducing any changes to the schematic. For example, you can start
developing your system by using the Resistive Tube block from the Foundation library,
which accounts only for friction losses. At a later stage in development, you may want to
account for fluid compressibility. You can then replace it with a Hydraulic Pipeline block,
available with Simscape Fluids™ block libraries, or, depending on your application, even
with a Segmented Pipeline block if you also need to account for fluid inertia. This
modeling principle is called incremental modeling.

Direction of Variables

Each variable is characterized by its magnitude and sign. The sign is the result of
measurement orientation. The same variable can be positive or negative, depending on
the polarity of a measurement gauge.

Elements with only two ports are characterized with one pair of variables, a Through
variable and an Across variable. Since these variables are closely related, their
orientation is defined with one direction. For example, if an element is oriented from port
A to port B, it implies that the Through variable (TV) is positive if it “flows” from A to B,
and the Across variable is determined as AV = AV, - AV, where AV, and AV} are the
element node potentials or, in other words, the values of this Across variable at ports A
and B, respectively.

element TV

directian \ -
A

AY B

i//,/—— reference nodes ——‘\\i

This approach to the direction of variables has the following benefits:
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* Provides a simple and consistent way to determine whether an element is active or
passive. Energy is one of the most important characteristics to be determined during
simulation. If the variables direction, or sign, is determined as described above, their
product (that is, the energy) is positive if the element consumes energy, and is
negative if it provides energy to a system. This rule is followed throughout the
Simscape software.

« Simplifies the model description. Symbol A - B is enough to specify variable polarity
for both the Across and the Through variables.

* Lets you apply the oriented graph theory to network analysis and design.

As an example of variables direction rules, let us consider the Ideal Force Source block. In
this block, as in many other mechanical blocks, port C is associated with the source
reference point (case), and port R is associated with the rod.

a2

14
f"]"\\ Ideal Force Source
w| O

I

Constant Simulink-P3
Converter kechanical
Translational
) Reference

The block positive direction is from port C to port R. This means that the force is positive
if it acts in the direction from C to R, and causes bodies connected to port R to accelerate
in the positive direction. The relative velocity is determined as v = v - vg, where vg, v,
are the absolute velocities at ports R and C, respectively, and it is negative if velocity at
port R is greater than that at port C. The power generated by the source is computed as
the product of force and velocity, and is negative if the source provides energy to the
system.

Definition of positive direction is different for different blocks. Check the block source or
the block reference page if in doubt about the block orientation and direction of variables.

All the elements in a network are divided into active and passive elements, depending on
whether they deliver energy to the system or dissipate (or store) it. Active elements (force
and velocity sources, flow rate and pressure sources, etc.) must be oriented strictly in
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accordance with the line of action or function that they are expected to perform in the
system, while passive elements (dampers, resistors, springs, pipelines, etc.) can be
oriented either way.

Connector Ports and Connection Lines

Simscape blocks may have the following types of ports:

* Physical conserving ports — Nondirectional ports (for example, hydraulic or
mechanical) that represent physical connections and relate physical variables based
on the Physical Network approach.

* Physical signal ports — Unidirectional ports transferring signals that use an internal
Simscape engine for computations.

Each of these ports and connections between them are described in greater detail below.
Physical Conserving Ports

Simscape blocks have special conserving ports B. You connect conserving ports with
physical connection lines, distinct from normal Simulink lines. Physical connection lines
have no inherent directionality and represent the exchange of energy flows, according to
the Physical Network approach.

* You can connect conserving ports only to other conserving ports of the same type.

* The physical connection lines that connect conserving ports together are
nondirectional lines that carry physical variables (Across and Through variables, as
described above) rather than signals. You cannot connect physical lines to Simulink
ports or to physical signal ports.

* Two directly connected conserving ports must have the same values for all their
Across variables (such as pressure or angular velocity).

* You can branch physical connection lines. When you do so, components directly
connected with one another continue to share the same Across variables. Any Through
variable (such as flow rate or torque) transferred along the physical connection line is
divided among the multiple components connected by the branches. How the Through
variable is divided is determined by the system dynamics.

For each Through variable, the sum of all its values flowing into a branch point equals
the sum of all its values flowing out.
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Each type of physical conserving ports used in Simscape blocks uniquely represents a
physical modeling domain. For a list of port types, along with the Through and Across
variables associated with each type, see the table in “Variable Types” on page 1-4.

For improved readability of block diagrams, each Simscape domain uses a distinct default
color and line style for the connection lines. For more information, see “Domain-Specific
Line Styles” on page 1-43.

Physical Signal Ports

Physical signal ports [* carry signals between Simscape blocks. You connect them with
regular connection lines, similar to Simulink signal connections. Physical signal ports are
used in Simscape block diagrams instead of Simulink input and output ports to increase
computation speed and avoid issues with algebraic loops. Physical signals can have units
associated with them. You specify the units along with the parameter values in the block
dialogs, and Simscape software performs the necessary unit conversion operations when
solving a physical network.

Simscape Foundation library contains, among other sublibraries, a Physical Signals block
library. These blocks perform math operations and other functions on physical signals,
and allow you to graphically implement equations inside the physical network.

Physical signal lines also have a distinct style and color in block diagrams, similar to
physical connection lines. For more information, see “Domain-Specific Line Styles” on
page 1-43.

See Also

Related Examples
. “Creating and Simulating a Simple Model” on page 1-19

More About

. “Connecting Simscape Diagrams to Simulink Sources and Scopes” on page 1-10
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Connecting Simscape Diagrams to Simulink Sources and
Scopes

1-10

Simscape block diagrams use physical signals instead of regular Simulink signals.
Therefore, you need converter blocks to connect Simscape diagrams to Simulink sources
and scopes.

Use the Simulink-PS Converter block to connect Simulink sources or other Simulink
blocks to the inputs of a Physical Network diagram. You can also use it to specify the
input signal units. For more information, see the Simulink-PS Converter block reference

page.

kechanical
s,
dgee Translational
Reference
1118 —
Pulse Simulink-P5
Genarator Converter
| 0
ldeal Force Source ol
1
1
1
i
1 To systemn

Use the PS-Simulink Converter block to connect outputs of a Physical Network diagram
to Simulink scopes or other Simulink blocks. You can also use it to specify the desired
output signal units. For more information, see the PS-Simulink Converter block reference

page.



See Also

To system

For a detailed example of using converter blocks to connect Simscape diagrams to

Mechanical
Translational
Reference

W
Id=al Force Sensor PS-Simulink
Corvertar

Scope

Simulink sources and scopes, see “Creating and Simulating a Simple Model” on page 1-

19.

See Also

Related Examples

“Creating and Simulating a Simple Model” on page 1-19

More About

“Physical Signal Ports” on page 1-9
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Simscape Block Libraries

1-12

In this section...

“Library Structure Overview” on page 1-12

“Accessing the Block Libraries” on page 1-14

Library Structure Overview

Simscape block library contains two libraries that belong to the Simscape product:

Foundation library — Contains basic hydraulic, mechanical, electrical, magnetic,
thermal, thermal liquid, two-phase fluid, gas, moist air, and physical signal blocks,
organized into sublibraries according to technical discipline and function performed

Utilities library — Contains essential environment blocks for creating Physical
Networks models

In addition, if you have installed any of the add-on products, you will see the
corresponding libraries under the main Simscape library. Add-on products are products in
the Physical Modeling family that use Simscape platform and, as a result, share common
functionality such as physical units management, editing modes, and so on.

Simscape Foundation libraries contain a comprehensive set of basic elements and
building blocks, such as:

Mechanical building blocks for representing one-dimensional translational and
rotational motion

Electrical building blocks for representing electrical components and circuits
Magnetic building blocks that represent electromagnetic components

Hydraulic building blocks that model fundamental hydraulic effects and can be
combined to create more complex hydraulic components

Thermal building blocks that model fundamental thermal effects

Thermal liquid building blocks that model fundamental thermodynamic effects in
liquids

Two-phase fluid building blocks that model fundamental thermodynamic effects in
systems where the working agent is part liquid and part vapor

Gas building blocks that let you model gas systems with various levels of idealization:
perfect gas, semiperfect gas, or real gas
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Simscape Block Libraries

* Moist air building blocks that let you model two- and three-species gas systems,
keeping track of humidity and trace gas levels in the air mixture

* Physical Signals block library that lets you perform math operations on physical
signals, and graphically enter equations inside the physical network

Using the elements contained in these Foundation libraries, you can create more complex
components that span different physical domains. You can then group this assembly of
blocks into a subsystem and parameterize it to reuse and share these components.

In addition to Foundation libraries, there is also a Simscape Utilities library, which
contains utility blocks, such as:

* Solver Configuration block, which contains parameters relevant to numerical
algorithms for Simscape simulations. Each Simscape diagram (or each topologically
distinct physical network in a diagram) must contain a Solver Configuration block.

* Simulink-PS Converter block and PS-Simulink Converter block, to connect Simscape
and Simulink blocks. Use the Simulink-PS Converter block to connect Simulink
outports to Physical Signal inports. Use the PS-Simulink Converter block to connect
Physical Signal outports to Simulink inports.

For examples of using these blocks in a Simscape model, see the tutorial “Creating and
Simulating a Simple Model” on page 1-19.

You can combine all these blocks in your Simscape diagrams to model physical systems.
You can also use the basic Simulink blocks in your diagrams, such as sources or scopes.
See “Connecting Simscape Diagrams to Simulink Sources and Scopes” on page 1-10 for
more information on how to do this.

Simscape block libraries contain a comprehensive selection of blocks that represent
engineering components such as valves, resistors, springs, and so on. These prebuilt
blocks, however, may not be sufficient to address your particular engineering needs.
When you need to extend the existing block libraries, use the Simscape language to
define customized components, or even new physical domains, as textual files. Then
convert your textual components into libraries of additional Simscape blocks that you can
use in your model diagrams. For more information on how to do this, see “Typical
Simscape Language Tasks”.
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Accessing the Block Libraries

You can access the blocks through the Simulink Library Browser. To display the Library
Browser, type slLibraryBrowser in the MATLAB® Command Window. Then expand the
Simscape entry in the contents tree.

S8 Simulink Library Browser — O X
&« M
Simscape
Robotics System Toolbox )
Robust Control Toolbox
SimEvents ‘ @ ‘ }-@ ‘ ‘E‘
“  Simscape
Foundation Library Driveline Electrical Fluids
Utilities
Driveline
Electrical % ﬁ: \
Fluids
> Mulibody Foundation Library  Multibody Utilities
Simulink 3D Animation
Sirmulink Cnrer b
< >

When you type simscape in the MATLAB Command Window, the main Simscape library
opens in a separate window.

The Simscape library consists of two top-level libraries, Foundation and Utilities. In
addition, if you have installed any of the add-on products of the Physical Modeling family,
you will see the corresponding libraries under Simscape library, as shown in the following
illustration. Some of these libraries contain second-level and third-level sublibraries. You
can expand each library by double-clicking its icon.
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Essential Physical Modeling Techniques

1-16

Building Your Model

The rules that you must follow when building a physical model with Simscape software
are described in “Basic Principles of Modeling Physical Networks” on page 1-2. This
section briefly reviews these rules.

* Build your physical model by using a combination of blocks from the Simscape
Foundation and Utilities libraries. Simscape software lets you create a network
representation of the system under design, based on the Physical Network approach.
According to this approach, each system is represented as consisting of functional
elements that interact with each other by exchanging energy through their ports.

» Each Simscape diagram (or each topologically distinct physical network in a diagram)
must contain a Solver Configuration block from the Simscape Utilities library.

» If you have hydraulic elements in your model, the working fluid used in the hydraulic
circuit defines their global parameters, such as fluid density, fluid kinematic viscosity,
fluid bulk modulus, and so on. To specify the working fluid, attach a Custom Hydraulic
Fluid block (or a Hydraulic Fluid block, available with Simscape Fluids block libraries)
to each topologically distinct hydraulic circuit. If no Hydraulic Fluid block or Custom
Hydraulic Fluid block is attached to a circuit, the hydraulic blocks use the default
fluid, which is equivalent to fluid defined by a Custom Hydraulic Fluid block with the
default parameter values.

* Ifyou have gas elements in your model, default gas properties are for dry air. Attach a
Gas Properties (G) block to each topologically distinct circuit to change gas properties.

» Ifyou have moist air elements in your model, default properties correspond to dry air,
water vapor, and carbon dioxide (the optional trace gas). Attach a Moist Air Properties
(MA) block to each topologically distinct circuit to change the air mixture properties.

* To connect regular Simulink blocks (such as sources or scopes) to your physical
network diagram, use the converter blocks, as described in “Using the Physical Signal
Ports” on page 1-18.

* Use the incremental modeling approach. Start with a simple model, run and
troubleshoot it, then add the desired special effects. For example, you can start
developing your system by using the Resistive Tube block from the Foundation library,
which accounts only for friction losses. At a later stage in development, you may want
to account for fluid compressibility. You can then replace it with a Hydraulic Pipeline
block, available with Simscape Fluids block libraries, or, depending on your
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application, even with a Segmented Pipeline block if you also need to account for fluid
inertia. For all these different mathematical models, the element configuration (that is,
the number and type of ports and the associated Through and Across variables) would
remain the same, meaning that the Physical Network approach lets you substitute
models of different levels of complexity without introducing any changes to the
schematic.

Simscape blocks, in general, feature both Conserving ports B and Physical Signal inports
and outports [=.

Using the Conserving Ports

The following rules apply to Conserving ports:

* There are different types of Physical Conserving ports used in Simscape block
diagrams, such as hydraulic, electrical, mechanical translational, mechanical
rotational, and so on. Each type has specific Through and Across variables associated
with it. For more information, see “Variable Types” on page 1-4.

* You can connect Conserving ports only to other Conserving ports of the same type.
Domain-specific line styles and colors help distinguish between different domains and
facilitate the connection process. For more information, see “Domain-Specific Line
Styles” on page 1-43.

» The Physical connection lines that connect Conserving ports together are
nondirectional lines that carry physical variables (Across and Through variables, as
described above) rather than signals. You cannot connect Physical lines to Simulink
ports or to Physical Signal ports.

» Two directly connected Conserving ports must have the same values for all their
Across variables (such as voltage or angular velocity).

* You can branch Physical connection lines. When you do so, components directly
connected with one another continue to share the same Across variables. Any Through
variable (such as current or torque) transferred along the Physical connection line is
divided among the multiple components connected by the branches. How the Through
variable is divided is determined by the system dynamics.

For each Through variable, the sum of all its values flowing into a branch point equals
the sum of all its values flowing out.
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Using the Physical Signal Ports

The following rules apply to Physical Signal ports:

You can connect Physical Signal ports to other Physical Signal ports with regular
connection lines, similar to Simulink signal connections. These connection lines carry
physical signals between Simscape blocks.

You can connect Physical Signal ports to Simulink ports through special converter
blocks. Use the Simulink-PS Converter block to connect Simulink outports to Physical
Signal inports. Use the PS-Simulink Converter block to connect Physical Signal
outports to Simulink inports.

Physical Signals can have units associated with them. Simscape block dialogs let you
specify the units along with the parameter values, where appropriate. Use the
converter blocks to associate units with an input signal and to specify the desired
output signal units.

For examples of applying these rules when creating an actual physical model, see the
tutorial “Creating and Simulating a Simple Model” on page 1-19.
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Creating and Simulating a Simple Model

In this section...

“Building a Simscape Diagram” on page 1-19
“Modifying Initial Settings” on page 1-27
“Running the Simulation” on page 1-28
“Adjusting the Parameters” on page 1-31

Building a Simscape Diagram

In this example, you are going to model a simple mechanical system and observe its
behavior under various conditions. This tutorial illustrates the essential steps to building
a physical model on page 1-16 and makes you familiar with using the basic Simscape

blocks.

Note For time-saving techniques and advanced ways of analyzing simulation data, see
the “Essential Steps for Constructing a Physical Model” tutorial.

The following schematic represents a simple model of a car suspension. It consists of a
spring and damper connected to a body (represented as a mass), which is agitated by a
force. You can vary the model parameters, such as the stiffness of the spring, the mass of
the body, or the force profile, and view the resulting changes to the velocity and position

of the body.
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To create an equivalent Simscape diagram, follow these steps:

1

Open the Simulink Library Browser, as described in “Simscape Block Libraries” on
page 1-12.

Create a new Simulink model using the Blank Model template. The software creates
an empty model in memory and displays it in a new model editor window.

Note Alternately, you can type ssc_new at the MATLAB Command prompt, to create
a new model prepopulated with certain required and commonly used blocks. For
more information, see “Creating a New Simscape Model”.

By default, Simulink Editor hides the automatic block names in model diagrams. To
display hidden block names for training purposes, clear the Hide Automatic Block
Names check box. For more information, see “Manage Block Names” (Simulink).

Open the Simscape > Foundation Library > Mechanical > Translational Elements
library.

Drag the Mass, Translational Spring, Translational Damper, and two Mechanical
Translational Reference blocks into the model window.

Orient the blocks as shown in the following illustration. To rotate a block, select it
and press Ctrl+R.
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Connect the Translational Spring, Translational Damper, and Mass blocks to one of
the Mechanical Translational Reference blocks as shown in the next illustration.
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8 To add the representation of the force acting on the mass, open the Simscape >
Foundation Library > Mechanical > Mechanical Sources library and add the Ideal

Force Source block to your diagram.

To reflect the correct direction of the force shown in the original schematic, flip the
block orientation. With the Ideal Force Source block selected, on the Format tab at
the top of the model window, under Arrange, click Flip up-down. Connect the
block's port C (for “case”) to the second Mechanical Translational Reference block,
and its port R (for “rod”) to the Mass block, as shown below.

1-22



Creating and Simulating a Simple Model

Mechanical ,
Translational
Reference1

R

14

Translational Spring
8]

Tranelational Damper

(5]

Mechanical
Translational
Reference

Add the sensor to measure speed and position of the mass. Place the Ideal
Translational Motion Sensor block from the Mechanical Sensors library into your

diagram and connect it as shown below.
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10 Now you need to add the sources and scopes. They are found in the Simulink
libraries. Open the Simulink > Sources library and copy the Signal Builder block into
the model. Then open the Simulink > Sinks library and copy two Scope blocks.
Rename one of the Scope blocks to Velocity and the other to Position.
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11 Every time you connect a Simulink source or scope to a Simscape diagram, you have
to use an appropriate converter block, to convert Simulink signals into physical
signals and vice versa. Open the Simscape > Utilities library and copy a Simulink-PS
Converter block and two PS-Simulink Converter blocks into the model. Connect the

blocks as shown below.
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12 Each topologically distinct physical network in a diagram requires exactly one Solver
Configuration block, found in the Simscape > Utilities library. Copy this block into
your model and connect it to the circuit by creating a branching point and connecting
it to the only port of the Solver Configuration block. Your diagram now should look
like this.
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13 Your block diagram is now complete. Save it as mech _simple.

Modifying Initial Settings

After you have put together a block diagram of your model, as described in the previous

section on page 1-19, you need to select a solver and provide the correct values for

configuration parameters.

To prepare for simulating the model, follow these steps:

1

Expand Solver details and set Max step size to 0. 2.

Select a Simulink solver. In the model window, open the Modeling tab and click
Model Settings. The Configuration Parameters dialog box opens, showing the
Solver pane.

Under Solver selection, set Solver to ode23t (mod.stiff/Trapezoidal).
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Also note that Simulation time is specified to be between 0 and 10 seconds. You can
adjust this setting later, if needed.

@ Configuration Parameters: mech_simple/Configuration (Active) - o x
Solver Simulation time ~

Data Import/Export
Math and Data Types
» Diagnostics

Start time: 0.0 Stop time: |10.0

Solver selection
Hardware Implementation

Model Referencing Type: |Variable-step ~ | Solver: |ode23t {(mod. stifffTrapezoidal) -
Simulation Target
» Code Generation ¥ Solver details
» Coverage
*» HDL Code Generation Max step size: 0.2 Relative tolerance: |1e-3
Simscape
Min step size: auto Absolute tolerance: |1e-3
Simscape Multibody 1G
» Simscape Multibody Initial step size: auto Auto scale absolute tolerance
Solver reset method: |Fast -
Shape preservation: Disable All -

Number of consecutive min steps: |1

Solver Jacobian method: auto hd

Zero-crossing options
Zero-crossing control: |Use local settings ¥ | Algorithm Nonadaptive -
Time tolerance: 107128%eps Signal threshold:

Number of consecutive zero crossings: [1000

Tasking and sample time options
Automatically handle rate transition for data transfer

Higher pricrity value indicates higher task priority

v

0K Cancel Help Apply

Click OK to close the Configuration Parameters dialog box.
2  Save the model.

Running the Simulation

After you've put together a block diagram and specified the initial settings for your model,
you can run the simulation.

1 The input signal for the force is provided by the Signal Builder block. The signal
profile is shown in the illustration below. It starts with a value of 0, then at 4 seconds
there is a step change to 1, and then it changes back to 0 at 6 seconds. This is the
default profile.
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The Velocity scope outputs the mass velocity, and the Position scope outputs the mass
displacement as a function of time. Double-click both scopes to open them.

Click & . The Simscape solver evaluates the model, calculates the initial conditions,
and runs the simulation. For a detailed description of this process, see “How
Simscape Simulation Works” on page 6-7. Completion of this step may take a few
seconds. The message in the bottom-left corner of the model window provides the

status update.

Once the simulation starts running, the Velocity and Position scope windows display
the simulation results, as shown in the next illustration.
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In the beginning, the mass is at rest. Then at 4 seconds, as the input signal changes
abruptly, the mass velocity spikes in the positive direction and gradually returns to
same time changes more gradually, on account of
inertia and damping, and stays at the new value as long as the force is acting upon it.
At 6 seconds, when the input signal changes back to zero, the velocity gets a mirror
spike, and the mass gradually returns to its initial position.

zero. The mass position at the
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You can now adjust various inputs and block parameters and see their effect on the mass
velocity and displacement.

Adjusting the Parameters

After running the initial simulation, you can experiment with adjusting various inputs and
block parameters.

Try the following adjustments:

1 Change the force profile on page 1-31.
2 Change the model parameters. on page 1-33
3 Change the mass position output units. on page 1-35

Changing the Force Profile

This example shows how a change in the input signal affects the force profile, and
therefore the mass displacement.

1 Double-click the Signal Builder block to open it.

2 Click the first vertical segment of the signal profile and drag it from 4 to 2 seconds,
as shown below. Close the block dialog.
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3 Run the simulation. The simulation results are shown in the following illustration.
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Changing the Model Parameters

In our model, the force acts on a mass against a translational spring and damper,
connected in parallel. This example shows how changes in the spring stiffness and
damper viscosity affect the mass displacement.

1 Double-click the Translational Spring block. Set its Spring rate to 2000 N/m.
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2 Run the simulation. The increase in spring stiffness results in smaller amplitude of

mass displacement, as shown in the following illustration.
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in the following illustration.

Next, double-click the Translational Damper block. Set its Damping coefficient to

Run the simulation. Because of the increase in viscosity, the mass is slower both in
reaching its maximum displacement and in returning to the initial position, as shown

nPosi!Fon
aH|A% k| E5K
-4

_ =10
12

(=[O =)
Ba%

N
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Changing the Mass Position Output Units

In our model, we have used the PS-Simulink Converter block in its default parameter
configuration. Therefore, the Position scope outputs the mass displacement in the
default length units, that is, in meters. This example shows how to change the output
units for the mass displacement to millimeters.

1 Double-click the PS-Simulink Converterl block. Type mm in the Qutput signal unit
combo box and click OK.

2 Run the simulation. In the Position scope window, click £ to autoscale the scope
axes. The mass displacement is now output in millimeters, as shown in the following
illustration.

B Position [E=8(EER =
2B|Qsk DRRDEFR -

See Also

More About

. “Basic Principles of Modeling Physical Networks” on page 1-2
. “Modeling Best Practices” on page 1-36
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Modeling Best Practices

1-36

In this section...

“Grounding Rules” on page 1-36

“Avoiding Numerical Simulation Issues” on page 1-40

Grounding Rules

This section contains guidelines for using domain-specific reference blocks (such as
Electrical Reference, Mechanical Translational Reference, and so on) in Simscape
diagrams, along with examples of correct and incorrect configurations.

Add reference blocks to your models according to the following rules:

* “Each Domain Requires at Least One Reference Block” on page 1-36

* “Each Circuit Requires at Least One Reference Block” on page 1-37

* “Multiple Connections to the Domain Reference Are Allowed Within a Circuit”
on page 1-39

Each Domain Requires at Least One Reference Block

Within a physical network, each domain must contain at least one reference block of the
appropriate type. For example, the electromechanical model shown in the following
diagram has both Electrical Reference and Mechanical Rotational Reference blocks
attached to the appropriate circuits.
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Each Circuit Requires at Least One Reference Block

Each topologically distinct circuit within a domain must contain at least one reference
block. Some blocks, such as an Ideal Transformer, interface two parts of the network but

do not convey information about signal levels relative to the reference block. In the

following diagram, there are two separate electrical circuits, and the Electrical Reference
blocks are required on both sides of the Ideal Transformer block.
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Saolver
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The next diagram would produce an error because it is lacking an electrical reference in
the circuit of the secondary winding.

Salwer
Configuration

t
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o

Ideal Transformer
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The following diagram, however, will not produce an error because the resistor defines
the output voltage relative to the ground reference.
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Multiple Connections to the Domain Reference Are Allowed Within a Circuit

More that one reference block may be used within a circuit to define multiple connections
to the domain reference:

* Electrical conserving ports of all the blocks that are directly connected to ground must
be connected to an Electrical Reference block.

» All translational ports that are rigidly clamped to the frame (ground) must be
connected to a Mechanical Translational Reference block.

» All rotational ports that are rigidly clamped to the frame (ground) must be connected
to a Mechanical Rotational Reference block.

* Conserving ports of all the fluids blocks that are referenced to atmosphere (for
example, suction ports of hydraulic pumps, or return ports of valves, cylinders,
pipelines, if they are considered directly connected to atmosphere) must be connected
to the appropriate domain reference, such as the Hydraulic Reference block.

For example, the following diagram correctly indicates two separate connections to an
electrical ground.
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1-40

Salwer
Configuration Motor
Inertia J
A
Rator i o
Resistanca R Rotational = )
C) 1.6 C:',l --- Electromechanical Idea.l Rotational
= Converter N Motion Sensor
£ o
L»——r ]

RPM

Avoiding Numerical Simulation Issues

Certain configurations of physical modeling blocks can cause numerical difficulties or
slow down your simulation. When this happens, Simscape solver issues a warning in the
MATLAB workspace and, if it fails to initialize, a Simscape error.

In electrical circuits, common examples that can cause this behavior include voltage
sources connected in parallel with capacitors, inductors connected in series with current
sources, voltage sources connected in parallel, and current sources connected in series.
Often, the cause of the numerical difficulty is immediately apparent. For example, two
voltage sources in parallel must have identical voltage values; otherwise, the ports
connecting them would not be physical conserving ports. In practical circuits, topologies
such as parallel voltage sources are possible, and small difference in their instantaneous
voltages is possible due to parasitic series resistance.

Note Mathematically, these topologies result in Index-2 differential algebraic equations
(DAEs). Their solution requires two differentiations of the constraint equations and, as
such, it is numerically better to avoid these component topologies where possible.
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There are two approaches to resolving these difficulties. The first is to change the circuit
to an equivalent simpler one. In the example of two parallel voltage sources, one source
can be simply deleted. The same applies to two series current sources, the deleted one
being replaced by a short circuit. For some circuit topologies, however, it is not possible
to find an equivalent simpler one that resolves the problem, and the second approach is
needed.

The second approach is to include small parasitic resistances in the component. In the
Simscape Foundation library, the Capacitor and Inductor blocks include such parasitic
terms, so that you can connect capacitances in parallel with voltage sources and
inductors in series with current sources. If your circuit does not have any such topologies,
then you can change the default parasitic terms to zero. Note that other blocks do not
contain these parasitic terms, for example, the Mutual Inductor block. Therefore, if you
wanted to connect a mutual inductor primary in series with a current source, you would
need to introduce your own parasitic conductance across the primary winding.

Example of Using a Parasitic Resistance to Avoid Numerical Simulation Issues

The following diagram models a differentiator that might be used as part of a
Proportional-Integral-Derivative (PID) controller. You can open this model by typing
ssc_opamp differentiator in the MATLAB Command Window.

M\'ﬂ t C]
o
=

Voltages

Qu Gain'—b“:"

Circuit Gain

| R*C*W*2*pi |—>||:||

- Circuit Gain
Differentiator

R

A

Simulate the model, and you will see that the output is minus the derivative of the input
sinusoid.
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Now open the capacitor C block dialog, and set the series resistance to zero. The model
now runs very slowly and issues warnings about problems with transient initialization and
step size control for transient solve.

The cause of the problems is that the circuit effectively connects the voltage source in
parallel with the capacitor. This is because an ideal op-amp satisfies V+ = V- , where V+
and V- are the noninverting and inverting inputs, respectively. This is an example where
it is not possible to replace the circuit with an equivalent simpler one, and a parasitic
small resistance has to be introduced.



Domain-Specific Line Styles

Domain-Specific Line Styles

For improved readability of block diagrams, each Simscape domain uses a distinct default
color and line style for the connection lines. Physical signal lines also have a distinct style
and color.

Domain-specific line styles apply to the block icons as well. If all the block ports belong to
the same domain, then the whole block icon assumes the line style and color of that
domain. If a block has multiple port types, such as the Rotational Electromechanical
Converter, then relevant parts of the block icon assume domain-specific line styles and
colors.

To view the line styles assigned to each domain, in the Simulink Toolstrip, on the Debug
tab, select Information Overlays > Simscape Legend. The Simscape Line Styles
Legend window opens, listing the line color assigned to each registered domain, the
domain name, and the domain path. If you click a domain path link, the Simscape file for
the corresponding domain opens in MATLAB Editor. For more information on domain
paths and files, see “Foundation Domains”.
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Simscape Line Styles Legend >

Color Name Path
I Electrical Domain foundation.electrical.electrical

Three-Phase Electrical Domain  foundation.electrical.three_phase
P Gas Domain foundation.gas.gas
[ Hydraulic Domain foundation.hydraulic.hydraulic
[ magnetic Domain foundation.magnetic.magnetic
[ mMechanical Rotational Domain  foundation.mechanical.rotational.rotational
I Mechanical Translational Domain foundation.mechanical.translational.translational
I Moist Air Domain foundation.moist_air.moist_air

Muoist Air Source Domain foundation.meist_air.moist_air_source
I thermal Domain foundation.thermal.thermal

Thermal Liquid Domain foundation.thermal _liquid.thermal _liquid
I Two-Phase Fluid Domain foundation.two_phase_fluid.two_phase_fluid
I Fhysical Signals -
I 5-D Mechanical (Belt-Cable) -
I 5-D Mechanical (Frame) -
I 5-D Mechanical (Geometry) -

Help

To turn off domain-specific line styles for a particular model, in the Simulink Toolstrip, on
the Debug tab, select Information Overlays > Simscape Domains. This action toggles
the Simscape Domains button off, and the block diagram display changes to black
connection lines and block icons, with physical ports visible at connection points.
Repeatedly selecting the Simscape Domains button toggles the domain-specific line
styles for this model on or off.

To turn off domain-specific line styles for all models, in the MATLAB Toolstrip, click
Preferences. In the left pane of the Preferences dialog box, select Simscape, then clear
the Enable domain styles for all models check box.
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Plot Lookup Tables

You can plot lookup table data specified for the PS Lookup Table (1D) and PS Lookup
Table (2D) blocks in your model. Plotting the tables lets you visualize the data before
simulating the model, to make sure that the table is correct. The plots reflect tabulated

data specified for the block, as well as the selected interpolation and extrapolation
options.

If you change the underlying table data, plotting it again opens a new window. This way,
you can compare the plots side by side and see how the block parameter values affect the
resulting lookup function.

1 Create a new model and add a PS Lookup Table (1D) block. Specify the block
parameters as shown.

Block Parameters: PS Lookup Table (10) e
PS Lookup Table (1D)
This block represents a physical signal converter whose input-output relationship is specified by a lookup

table. The table grid must be in strictly ascending or strictly descending order, but the spacing can be
nenuniform.

Right-click on the block and select Foundation Library > Plot Table to visualize the table data based on the
selected interpolation and extrapolation methods.

Source code

Settings
Parameters
Table grid vector: |[1r 2,3,4,5] |
Table values: |[O, 0.1, 2, 3.9, 4] |
Interpeolation method: Linear -
Extrapolation method: Linear -

Cancel Help Apply

2 Right-click the block in your model. From the context menu, select Foundation
Library > Plot Table.

A figure window containing the plot of the data opens.
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4. Figure 1: P5 Lookup Table (1D) - O X
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In the block dialog box, change the Interpolation method parameter value to
Smooth.

Plot the data again by right-clicking the block and selecting Foundation Library >
Plot Table.

A new figure window opens.
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4. Figure 2: P5 Lookup Table (1D) - O X
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The curve shape has changed because of the new interpolation method.

5 In the block dialog box, change the Extrapolation method parameter value to
Nearest.

6 Plot the data again by right-clicking the block and selecting Foundation Library >
Plot Table.

A new figure window opens.
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4. Figure 3: P5 Lookup Table (1D) - O X
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156 /
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The curve shape within the table grid (between 1 and 5 along the x-axis) has not
changed, but the new extrapolation method affects how the curve continues outside
the specified range.

Note If you change the Extrapolation method parameter value to Error, there is
no extrapolation region and the plot gets cut off at the first and last grid points.

See Also
PS Lookup Table (1D) | PS Lookup Table (2D)
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Physical Signal Unit Propagation

Physical signals have units associated with the signal value. You specify the units along
with the parameter values in the block dialogs, and Simscape software performs the
necessary unit conversion operations when solving a physical network. If the signal is a
vector or a matrix, all its elements have the same unit. Unitless signals have their unit
designated as 1.

Simscape blocks in the Physical Signals block library (PS blocks) allow you to graphically
implement equations inside the physical network by performing math operations and
other functions on physical signals. These blocks have untyped input and output ports, to
facilitate unit propagation:

* The physical unit associated with the input signal of a PS block is propagated from the
connected output signal.

* The physical unit associated with the output signal of a PS block is determined by the
unit of the input signal and the equations inside the block. If a block performs a math
operation, that operation is performed both on the value and the unit of the input
physical signal.

For example, consider a PS Gain block connected to a Current Sensor output port. Then,
the physical unit at the PS Gain input port is A. The physical unit at the PS Gain output
port is the input signal unit multiplied by the unit of the Gain parameter:

» If the Gain parameter unit is 1 (unitless), then the output signal has the same unit as
the input signal, that is, A.

+ If the Gain parameter unit is V, then the output physical signal has the unit of W.

Similarly, the PS Product block multiplies both the values and units of the two input
signals.

N S
—t:. -
» N*m

—1
PS Product

The PS Add and PS Subtract blocks perform addition and subtraction on the two input
signals, and therefore, the physical signal units at the two input ports of these blocks
must be commensurate. If the two input signals have the same unit, then the output



See Also

signal unit has that unit as well. If the input signal units are commensurate, then the
output signal unit is the fundamental unit for that dimension.

—|;:-I+ ] mim
R — ki
mm P3 Add

 ——
om PS Add
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[ Ermror
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The PS Signal Specification block lets you explicitly specify the size and unit of a physical
signal. Use this block when the signal size and unit cannot be determined implicitly, based
on model connections.

See Also
PS Signal Specification

More About
. “Upgrading Models with Legacy Physical Signal Blocks” on page 1-52
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Upgrading Models with Legacy Physical Signal Blocks

1-52

In this section...

“Example of an Automatic Upgrade” on page 1-54
“Example of a Nonautomatic Upgrade” on page 1-55

In R2019a, all blocks in the Physical Signals library have been reimplemented with
untyped inputs and outputs, to facilitate signal size and unit propagation. These new
blocks do not automatically replace the respective legacy blocks in your model. To
upgrade your blocks to the latest version, use the Upgrade Advisor.

After running the Check and update outdated Simscape Physical Signal blocks
check, you get a list of links to the outdated blocks in the right pane of the Upgrade
Advisor window. Clicking a link highlights the corresponding block in the model.




Upgrading Models with Legacy Physical Signal Blocks

Check and update outdated Simscape Physical Signal blocks
Analysis ("~ Triggers Update Diagram)

Identify outdated Simscape Physical Signal blecks in @ model and offer options to upgrade the block instances to the latest version. The latest version
of Physical Signal blocks will propagate port unit and sizes.

Result: /& Warning

Warning
The model contains outdated Simscape Physical Signal blocks. The following blocks can be automatically upgraded:

¢ PSUpgradeExampleThermal Modell/PS Productl
¢ PSUpgradeExample Thermal Model2/PS Product?

Recommended Action
Use the upgrade link below to upgrade the above blocks to the latest version.
Upgrade

Warninge

The following Simscape Physical Signal blocks, when switched to propagate signal units, will result in a compilation error or different
answer. To update:

1. Click each action link "Switch to new version' below
2. Visit affected blocks in the model and address the indicated upgrade 1ssue

Typically changing block parameter units, or adding a PS Gain block to convert units as needed, will fix the issue. For more information
see Upgrading Models with Legacy Physical Signal Blocks.

Blocks Upgrade Issue

& PSUpgradeExample/Loss  Error using foundation.signal.lookup_tables.one_dimensional> (ling 35) Switch
Model/PS Gainl [ESUpgradeExample/Loss Model'PS Lookup Table (11)°]: Function, tablelookup, is wrong.  to new

+ PSUpgradeExample/Loss Please check 1) whether input data points have correct sizes; 2) query values are scalar; 3) version
ModelPS Gain2 query values and table data have the commensurate units: and 4) constants or compile time

¢ . /Loss Model/PS parameters are passed to interpolation and extrapolation argument.

Lookup Table (1D}
Caused by:
Argument | = [1x26 double]
Argument 2 = [[x26 double]
Argument 3 = {[Ix] double], Tad/s'}
x =[1x26 double]
f=[1x26 double]

= {[I1x] double], 'rad/s'}

extrap_method = int32(int32(1))
interp_method = int32(int32(1}))
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Depending on your model, the links can be divided into multiple groups:

Report Section

Upgrade Action

If the model contains outdated blocks that
can be updated automatically, they are
listed in the first section of the report,
followed by the Upgrade link.

Click the Upgrade link under the list of
block links. The software automatically
replaces each of the listed blocks with its
latest library version, while keeping all the
parameter values and setting the parameter
units, if appropriate. For more information,
see “Example of an Automatic Upgrade” on
page 1-54.

Sometimes, legacy blocks cannot be
converted automatically because direct
conversion would result in a compilation
error or a different answer. These blocks
are listed in a table, grouped by the
underlying issue. Each row of the table
contains:

1 Alist of links to blocks affected by the
issue

Issue description

A Switch to new version link

Review the table that groups the blocks
based on the underlying issue. For each
table row, click the Switch to new version
link to convert all blocks listed in the first
cell of this row, and then visit the affected
blocks individually to resolve the issue. For
more information, see “Example of a
Nonautomatic Upgrade” on page 1-55.

Example of an Automatic Upgrade

If the Upgrade Advisor finds legacy Physical Signal blocks that can be updated
automatically, it lists all these blocks in the first group of links, followed by the Upgrade

link.
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The model contains outdated Simscape Physical Signal blocks. The following blocks can be automatically upgraded:

¢ PSUpgsradeExample Thermal Modell/PS Product|
¢ PSUpgsradeExample Thermal Model2/PS Product2

Recommended Action
Liiii 1|i'.ngmde link below to upgrade the above blocks to the latest version.

This is an example of a model that can be upgraded automatically.

: =
¢ |l Sk
@—‘@1 AAAAS AR L AbdB 5
PS Product —
Current Sensor Controlled Heat Flow
Rate Source —
. W — U Thermal Mass
OIS =

Voltage Sensor

The legacy PS Product block does not propagate units. However, if you replace this block
with the current version of the PS Product block, there is no issue with unit propagation.
The first input signal, from the Current Sensor, is in A. The second input signal, from the
Voltage Sensor, is in V. Their product, the output signal, is in W, which is the expected unit
at the input port S of the Controlled Heat Flow Rate Source block.

When you click the Upgrade link, the software automatically replaces the legacy PS
Product block with its latest library version.

Example of a Nonautomatic Upgrade

Sometimes, legacy blocks cannot be converted automatically because direct conversion
would result in a compilation error or a different answer. In this case, you must inspect
the affected blocks individually to resolve the issue and ensure that the model works as
intended.

This is an example of a model that cannot be upgraded automatically.
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<22
O D g e

rad/s to rpm Ibf-ft to Nm
Torque loss (Ibf-ft) as a Torque loss
function of shaft speed (rpm)

Ideal Rotational
Motion Sensor

The PS Lookup Table (1D) block in this diagram contains tabulated data of torque loss, in
Ibf*ft, as a function of shaft speed, in rpm.
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Block Parameters: PS Lockup Table (10 X

PS Lookup Table (10}

This block represents a physical signal converter whose input-output relationship is specified by a lookup
table. The table grid must be in strictly ascending or strictly descending order, but the spacing can be
nonuniform.

Right-click on the block and select Foundation Library = Plot Table to visualize the table data based on the
selected interpolation and extrapolation methods.

5 block does not propagate physical signal units and will be removed in a future release. Use the
ade Advisor to update this block to the latest version.

Source code

Settings
Parameters
Table grid vector: |[500:100:3000] |
Table values: |5Er 1.375556 1.48 1.588889 1.702222 1.82 1.942222 2.068889 2.2]|
Interpolation method: Linear -
Extrapolation method: Linear -

Cancel Help Apply

The output signal coming from the Ideal Rotational Motion Sensor block is in rad/s, and
the input port S of the Ideal Torque Source block, which models the torque loss, expects
the unit of N/m. Legacy Physical Signal blocks did not propagate units, therefore the
model contains two PS Gain blocks, on each side of the PS Lookup Table (1D) block, to
account for unit conversion. For example, the first PS Gain block provides the coefficient
to convert rad/s to rpm.
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Block Parameters: PS Gainl >
[al

PS Gain
This block multiplies the input physical signal by a constant:

¥y = u * gain
The Gain parameter accepts both positive and negative values. All connections are physical signal ports.

ock does not propagate physical signal units and will be removed in a future release. Use the
ade Advisor to update this block to the latest version.

Source code

Settings

Parameters

Gain: | 60/(2*pi)

Cancel Help Apply

When you run the Check and update outdated Simscape Physical Signal blocks
check on this model, the Upgrade Advisor detects the unit mismatch but cannot
determine whether the PS Gain blocks address the issue. Therefore, it lists all three
blocks in the same row of the table, followed by the error description and the Switch to
new version link.
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-
warning

The following Simscape Physical Signal blocks. when switched to propagate signal units, will result in a compilation error or different
answer. To update:

1. Click each action link "Switch to new version’ below
2. Visit affected blocks in the model and address the indicated upgrade issue

Typically changing block parameter units, or adding a PS Gain block to convert units as needed, will fix the issue. For more information
see Upgrading Models with Legacy Physical Signal Blocks.

Upgrade Issue
¢ PSUpgradeExample/Loss Error using foundation.signal.lookup_tables.one_dimensional= (line 35)
Model/PS Gainl [PSUpgradeExample/Loss Model/PS Lookup Tahle ( 1D7]: Function, tablelookup, is wrong.
¢ PSUpgradeExample/Loss Please check 1) whether input data points have correct sizes; 2) query values are scalar; 3)
Model/PS Gain2 query values and table data have the commensurate units: and 4) constants or compile time
e _../Loss Model/'PS parameters are passed to interpolation and extrapolation argument.

Lookup Table (1D
Caused by:
Argument | = [1x26 double]
Argument 2 = [1x26 double]
Argument 3 = {[1x] double], 'rad’s"}
x = [1%26 double]
f=[1x26 double]
I={[Ix] double], rad/s'}
extrap_method = int32(int32{1))
interp_method = int32(int32(1))

When you click Switch to new version, the three legacy blocks are replaced with their
respective latest versions. However, this does not resolve the unit mismatch issue. You
have to address it manually.

The new Physical Signal blocks propagate units, and therefore you no longer need the
two PS Gain blocks. The correct way to resolve the issue in this model is to delete these
two blocks and set the proper units for the PS Lookup Table (1D) block parameters.

CcH—= : 2
. s
F@N P |“k"h : > R
A—>] CTy-C D
Ideal Rotaticnal
Torgue loss (Ibf-ft) as a Torgue loss
Motion Sensor .
funetion of shaft speed (rpm)
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PS Lookup Table (1D)

Source code

Settings
Parameters
Table grid vector:

Table values:

Interpolation method:

Extrapolation method:

Block Parameters: PS Lockup Table (10

Right-click on the block and select Foundation Library > Plot Table to visualize the table data based on the
selected interpolation and extrapolation methods.

This block represents a physical signal converter whose input-output relationship is specified by a lookup table.
The table grid must be in strictly ascending or strictly descending order, but the spacing can be nonuniform.

| [500:100:3000]

| pm

1.588889 1.702222 1.82 1.942222 2.068889 2.2]| | Ibf*ft

Linear

Linear

carcl

Help

Apply

See Also

More About

. “Physical Signal Unit Propagation” on page 1-50
. “Model Upgrades” (Simulink)
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Thermal Liquid Models

* “Modeling Thermal Liquid Systems” on page 2-2

* “Thermal Liquid Library” on page 2-7

* “Thermal Liquid Modeling Framework” on page 2-11
* “Heat Transfer in Insulated Oil Pipeline” on page 2-15
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Modeling Thermal Liquid Systems

2-2

In this section...

“When to Use Thermal Liquid Blocks” on page 2-2
“Modeling Workflow” on page 2-3

“Establish Model Requirements” on page 2-3
“Model Physical Components” on page 2-4
“Prepare Model for Analysis” on page 2-5

“Run Simulation” on page 2-5

When to Use Thermal Liquid Blocks

The Thermal Liquid library expands the fluid modeling capability of Simscape. With this
library, you can account for thermal effects in a fluid system. For example, you can model
the warming effect of viscous dissipation in a pipe. You can also account for the
temperature dependence of fluid properties, e.g., density and viscosity.

To decide whether Thermal Liquid blocks fit your modeling needs, consider the fluid
system you are trying to represent. Other Simscape blocks, such as Hydraulic or Two-
Phase Fluid, may better suit your application. Assess the following:

* Number of phases

Is the fluid medium single phase or multiphase?

* Relevant phases

Is the fluid medium a gas, a liquid, or a multiphase mixture?
* Thermal effects
Does temperature change significantly in the time scale of the simulation? Are thermal

effects important for analysis? Are the temperature dependences of the liquid
properties important?

As a rule, use Thermal Liquid blocks for fluid systems in which a single-phase liquid
experiences significant temperature changes.
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Modeling Workflow

The suggested workflow for Thermal Liquid models includes four steps:

1 Establish model requirements — Define the purpose and scope of the model. Then,
identify the relevant components and interactions in the model. Use this information
as a guide when building the model.

2 Model physical components — Determine the appropriate blocks for modeling the
relevant components and interactions. Then, add the blocks to the model canvas and
connect them according to the Simscape connection rules. Specify the block
parameters.

3 Prepare model for analysis — Add sensors to the model. Alternatively, configure the
model for Simscape data logging. Check the physical units of each sensed variable.

4 Run simulation — Configure the solver settings. Then, run the simulation. If
necessary, refine the model until you achieve the desired fidelity level.

Establish Model Requirements

The foundation of a good model is a clear understanding of its purpose and requirements.
What are you trying to accomplish with the model? What are the relevant components,
processes, and states? Determine what is essential and what is not. Start simple, using a
rough approximation of the physical system as a guide. Then, iteratively add detail to
reach the appropriate model fidelity for your application.

An insulated oil pipeline buried underground provides an example. As oil flows through
the pipeline, it experiences conductive heat losses due to the cooler pipeline
surroundings. Heat flows across three material layers—pipe wall, insulant, and soil—
causing oil temperature to drop. However, only conduction across soil and insulant layers
matter. A typical pipe wall is thin and conductive, and its effect on conductive heat loss is
minimal at best. Omitting this process simplifies the model and speeds up simulation.

You also must determine the dimensions and properties of each component. During
modeling, you specify these parameters in the Simscape blocks for the components.
Obtain the physical properties of the liquid medium. Manufacturer data sheets typically
provide this data. You can also use analytical expressions to define the physical property
lookup tables.

When modeling pipes, consider the impact that dynamic compressibility and flow inertia
have on the transient system behavior. If the time scale of an effect exceeds the
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simulation run time, the impact is usually negligible. During modeling, turn off negligible
effects to improve simulation speed. Characteristic time scales for dynamic
compressibility and flow inertia are approximately L/c and L/v, respectively, where:

» L is the length of the pipe.
* v is the mean flow velocity through the pipe.
* cis the speed of sound in the liquid medium.

If you are unsure whether an effect is relevant to your model, simulate the model with
and without that effect. Then, compare the two simulation results. If the difference is
substantial, leave that effect in place. The result is greater model fidelity at small time
scales, e.g., during transients associated with flow reversal in a pipe.

Model Physical Components

Start by adding a Thermal Liquid Settings (TL) block to the model canvas. Use this block
to provide the physical properties of the liquid medium. This block is not strictly required,
but without it the liquid properties are reset to their default values, given for water. In the
block dialog box, enter the physical property lookup tables that you acquired during the
planning stage.

Identify the appropriate blocks for representing the physical components and their
interactions. Components can be simple, requiring a single block, or custom, requiring
multiple blocks typically within a Subsystem block. Add the blocks to the model canvas
and connect them according to the Simscape connection rules.

The ssc_tl hydraulic fluid warming example shows simple and custom
components. The Mass Flow Rate Source (TL) represents an ideal power source. It is a
simple component. The Double-acting cylinder subsystem block represents the
mechanical part of a hydraulic actuator. It contains two Translational Mechanical
Converter (TL) blocks and is a custom component.

Once you have connected the blocks, specify the relevant parameters. These include
dimensions, physical states, empirical correlation coefficients, and initial conditions. In
Pipe (TL), Rotational Mechanical Converter (TL), and Translational Mechanical Converter
(TL) blocks, select the appropriate setting for effects such as dynamic compressibility and
flow inertia.

Note For accurate simulation results, always replace the default parameter values with
data appropriate for your model.




See Also

Prepare Model for Analysis

To analyze a model, you must set up that model for data collection. The simplest approach
is to add sensor blocks to the model. The Thermal Liquid library provides two sensor
block types: one for Through variables (mass and energy flow rates), the other for Across
variables (pressure and temperature). By using the PS-Simulink Converter block, you can
specify the physical units of the sensed variable.

An alternative approach is to use Simscape data logging. This approach, which uses
MATLAB commands instead of blocks, provides access to a broader range of model
variables and parameters. One example is the kinematic viscosity of the liquid medium
inside a pipeline segment. You can analyze this parameter using Simscape data logging
but not sensor blocks.

For an overview of Simscape data logging, see “About Simulation Data Logging” on page
12-2. For an example of how to plot logged data, see “Log and Plot Simulation Data” on
page 12-9.

Run Simulation

The final step in the modeling workflow is to simulate the model. Before running
simulation, check that the numerical solver is appropriate for your model. To do this, use
the Model Configuration Parameters dialog box.

For physical models, variable-step solvers such as odel5s typically perform best. Reduce
step sizes and tolerances for greater simulation accuracy. Increase them instead for faster
simulation.

Run the simulation. Plot simulation data from sensors and Simscape data logging, or

process it for further analysis. If necessary, refine the model. For example, correct
simulation issues or to improve model fidelity.

See Also

Related Examples

. “Heat Transfer in Insulated Oil Pipeline” on page 2-15
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More About
. “Thermal Liquid Library” on page 2-7
. “Thermal Liquid Modeling Framework” on page 2-11
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Thermal Liquid Library

In this section...

“Why Use Thermal Liquid Blocks?” on page 2-7
“Representing Thermal Liquid Components” on page 2-7
“Specifying Thermal Liquid Medium” on page 2-9

“Modeling Multidomain Systems” on page 2-9

Why Use Thermal Liquid Blocks?

The thermal behavior of liquid systems is of interest in many engineering applications.
Liquids can store energy and release it back to their surroundings, often doing work in
the process. Oil flow through an underground pipeline and hydraulic fluid flow in an
aircraft actuator are two examples.

When temperature fluctuations are negligible, liquids behave as isothermal fluids, which
simplifies the modeling process. However, when detailed thermal analysis is a goal, or
when temperature fluctuations are significant, this assumption is no longer suitable.

The Thermal Liquid library provides a modeling tool that you can use to analyze the
thermal behavior of thermal liquid systems. Three featured examples show some
applications well-suited for Thermal Liquid modeling:

* ssc_tl 0il pipeline — Model oil temperature along an insulated underground
pipeline.

* ssc_tl hydraulic_ fluid warming — Model hydraulic fluid warming due to
viscous dissipation inside a hydraulic actuator.

*+ ssc_tl water hammer — Model the water hammer effect due to a fast-turning
hydraulic valve.

Representing Thermal Liquid Components

Thermal liquid systems can range in complexity from basic to highly specialized. To model
a basic system, simple components often suffice. These are components such as
chambers, pipes, pumps, and the liquid medium itself. Simple components are often
industry independent and can be modeled using a single Thermal Liquid block. For
example, you can model a pipeline segment using a single Pipe (TL) block.
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To model a specialized system, generally you use custom components. These are
components that you cannot represent by a single Thermal Liquid block. The five-way
directional control valve in the ssc_t1l hydraulic fluid warming example is one
such component. Custom components are often industry specific and must be modeled by
grouping Thermal Liquid blocks into more complex subsystems.

The Thermal Liquid library shares the structure of other Simscape Foundation libraries.
Four sublibraries supply the Thermal Liquid blocks: Elements, Sources, Sensors, and
Utilities. With these sublibraries you can represent the most common components of a
thermal liquid system. The table summarizes these components.

Component Type

Description

Thermal Liquid Blocks

Liquid storage

Store liquid in chambers or
reservoirs.

Constant Volume Chamber
(TL), Reservoir (TL),
Controlled Reservoir (TL)

Liquid transport

Transport thermal liquid
through closed conduits
such as pipes.

Pipe (TL)

Flow restriction

Restrict thermal liquid flow,
e.g., due to valves or
fittings.

Local Restriction (TL)

Mechanical interfaces

Interface thermal liquid and
mechanical systems, e.g., to
convert liquid mechanical
energy into useful work.

Translational Mechanical
Converter (TL), Rotational
Mechanical Converter (TL)

Power sources

Provide a power source to
the thermal liquid system,
e.g., pressure difference or
mass flow rate.

Mass Flow Rate Source
(TL), Pressure Source (TL),
Controlled Mass Flow Rate
Source (TL), Controlled
Pressure Source (TL)

Sensors

Output measurement data
for dynamic variables such
as mass flow rate, energy
flow rate, pressure, and
temperature.

Pressure & Temperature
Sensor (TL), Mass & Energy
Flow Rate Sensor (TL),
Thermodynamic Properties
Sensor (TL), Volumetric
Flow Rate Sensor (TL)
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Component Type Description Thermal Liquid Blocks
Thermal liquid Specify thermodynamic Thermal Liquid Settings
properties and pressure- (TL)

temperature validity region
of thermal liquid medium.

Specifying Thermal Liquid Medium

The Thermal Liquid Settings (TL) block specifies the thermodynamic properties of the
liquid medium. These properties are assumed functions of both pressure and
temperature. This assumption boosts model fidelity, especially in models in which
pressure, temperature, or both, vary widely.

The block accepts two-way lookup tables as input. These tables provide the different
thermodynamic property values at discrete pressures and temperatures. You can populate
these tables using empirical data from product data sheets or values calculated from
analytical expressions.

Modeling Multidomain Systems

Thermal Liquid blocks can contain different types of conserving ports. These ports
include not only Thermal Liquid conserving ports but also thermal and mechanical
conserving ports. By using these ports, you can interface a Thermal Liquid subsystem
with thermal and mechanical subsystems.

For instance, you can use the thermal conserving port of a Pipe (TL) block to model
conductive heat transfer through a pipe wall. Qil pipeline modeling is one application. The
example ssc_tl 0il pipeline shows this approach.

Similarly, you can use the translational mechanical conserving ports of a Translational
Mechanical Converter (TL) block to convert hydraulic pressure in a thermal liquid system
into a mechanical actuation force. Hydraulic actuator modeling is one application. The
example ssc_t1l hydraulic_ fluid warming shows this approach.

The table lists the Thermal Liquid blocks that have thermal or mechanical conserving

ports. You can use these blocks to create a multidomain model containing thermal liquid,
thermal, and mechanical subsystems.
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Thermal Liquid Block Thermal Conserving Port |Mechanical Conserving
Port

Constant Volume Chamber v X

(TL)

Pipe (TL) v X

Rotational Mechanical v v

Converter (TL)

Translational Mechanical v v

Converter (TL)

See Also

Related Examples

. “Heat Transfer in Insulated QOil Pipeline” on page 2-15

More About

. “Modeling Thermal Liquid Systems” on page 2-2

. “Thermal Liquid Modeling Framework” on page 2-11
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Thermal Liquid Modeling Framework

In this section...

“How Blocks Represent Components” on page 2-11
“How Ports Represent Interfaces” on page 2-12
“Full Flux Scheme” on page 2-13

How Blocks Represent Components

Thermal Liquid models are based on the finite volume method. This method discretizes a
thermal liquid system into multiple control volumes that interact via shared interfaces. An
oil pipeline system is one example: you can model this system as a set of pipeline
segments that connect serially along the pipeline length.

p——  Liguid System ——————

Wolume Interface

Discretization of Pipeline System

A control volume can represent a thermal liquid component, such as an oil pipeline, or a
part of a component, such as a pipeline segment. You can discretize a thermal liquid
system and its components as finely as you need, for example to increase simulation
accuracy. However, the finer the discretization, the greater the model complexity—and
the slower the simulation.

Thermal Liquid blocks represent the control volume of a component using an internal
node. This node provides the liquid pressure and temperature inside the component. The
node is not visible, but you can access its parameters and variables using Simscape data
logging. For more information, see “About Simulation Data Logging” on page 12-2.
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@ C — Internal Node

Simscape Nodes in Pipe (TL) Block

Two physical principles govern the dynamic evolution of liquid pressure and temperature
at the internal node of a control volume: mass conservation and energy conservation.
Pressure and temperature computation is carried out for the control volume surrounding
the internal node. This control volume is the total volume of the thermal liquid component
the block represents.

A second set of nodes represents the interfaces through which a finite volume can
interact with its neighbors. These nodes are visible as Simscape conserving ports, of
which Thermal Liquid conserving ports are the most important. By allowing the exchange
of mass, momentum, and energy between adjacent liquid volumes, Thermal Liquid
conserving ports govern the dynamic evolution of the finite volume as it tends to a steady
state.

How Ports Represent Interfaces

Thermal Liquid conserving ports provide the liquid pressure and temperature at the
interfaces they represent. They also provide the flow rates of mass and heat, which
govern the interactions between thermal liquid components. Pressure and temperature
are the Across variables of the Thermal Liquid domain, while the flow rates are the
Through variables.

Two physical principles govern the mass and heat flow rates through a Thermal Liquid
conserving port: momentum conservation and energy conservation. The mass flow rate at
a port is computed from the momentum conservation principle. The heat flow rate at a
port is computed from the thermal energy conservation principle.



Thermal Liquid Modeling Framework

The flow rate computations are carried out for half the control volume of a thermal liquid
component. The half control volume is bounded on one end by the interface the port
represents, and on another end by a parallel surface passing through the control volume
centroid.

The figure shows the half control volume for flow rate computations at interface A of a
pipeline segment. Interface A corresponds to Thermal Liquid conserving port A of a Pipe
(TL) block. Node C corresponds to the internal node of the block, which is coincident with
the control volume centroid.

I
g
n |

@ A — Control Violume Interface
@ C — Control Volume Centroid

Half Control Volume for Flow Rate Calculations

Full Flux Scheme

Blocks in the Thermal Liquid library implement a full flux scheme. Using this scheme, the
net heat flux through a Thermal Liquid conserving port contains both convective and
conductive flux contributions. By including thermal conduction in the flow direction,
Thermal Liquid blocks provide more realistic simulation of the physical system they
represent.

Other advantages of the full flux scheme include enhanced simulation robustness of

thermal liquid models. This robustness becomes relevant in models where the conductive
flux contribution can be dominant. Examples include instances of low mass flow rates and
flow reversal, during which the convective flux becomes negligible or vanishes altogether.
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See Also

Related Examples

. “Heat Transfer in Insulated QOil Pipeline” on page 2-15

More About

. “Modeling Thermal Liquid Systems” on page 2-2
. “Thermal Liquid Library” on page 2-7
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Heat Transfer in Insulated Oil Pipeline

In this section...

“Qil Pipelines” on page 2-15

“Modeling Considerations” on page 2-16
“Simscape Model” on page 2-18

“Run Simulation” on page 2-19

“Run Optimization Script” on page 2-24

Oil Pipelines

Temperature plays an important role in oil pipeline design. Below the so-called cloud
point, paraffin waxes precipitate from crude oil and start to accumulate along the pipe
wall interior. The waxy deposits restrict oil flow, increasing the power requirements of the
pipeline. At still-lower temperatures—below the pour point of oil—these crystals become
so numerous that, if allowed to quiesce, oil becomes semisolid.

_W

In cold climates, conductive heat losses through the pipe wall can be significant. To keep
oil in its favorable temperature range, pipelines include some temperature control
measures. Heating stations placed at intervals along the pipeline help to warm the oil. An
insulant liner covering the pipe wall interior helps to retard the cooling rate of the oil.

Viscous dissipation provides an additional heat source. As adjacent parcels of oil flow
against each other, they experience energy losses that appear in the form of heat. The
warming effect is small, but sufficient to at least partially offset the conductive heat losses
that occur through the insulant liner.
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At a certain insulation thickness, viscous dissipation exactly balances the conductive heat
loss. Oil stays at its ideal temperature throughout the pipeline length and the need for
heating stations is reduced. From a design standpoint, this insulation thickness is optimal.

In this example, you simulate an insulated oil pipeline segment. You then run an
optimization script to determine the optimal insulation thickness. This example is based
on Simscape model ssc_t1 oil pipeline.

Modeling Considerations

The physical system in this example is an oil pipeline segment. Insulation lines the pipe
wall interior, while soil covers the pipe wall exterior, retarding conductive heat loss. The
simplifying assumption is made that the physical system is symmetric about the pipe
center line.

e 0 © o

A—0GQil B —Insulation C— Fipe D — Sail

Flow through the pipeline segment is assumed fully developed: the velocity profile of the
flowing oil remains constant along the pipeline length. In addition, oil is assumed
Newtonian and compressible: shear stress is proportional to the shear strain, and mass
density varies with both temperature and pressure.

Oil enters the pipeline segment at a fixed temperature, TUpstream, with a fixed mass flow
rate, Vdot * rho0, where:

* Vdot is the volumetric flow rate of oil through the pipe.
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* rho0 is the mass density of oil entering the pipeline segment.

Inside the pipeline segment, viscous dissipation heats the flowing oil, while thermal
conduction through the pipe wall cools it. The balance between the two processes
governs the temperature of oil exiting the pipeline segment.

The amount of heat gained through viscous dissipation depends partly on oil viscosity and
mass flow rate. The greater these quantities are, the greater the viscous heat gain is, and
the warmer the oil tends to get. The amount of heat lost via thermal conduction depends
partly on the thermal resistances of the insulation, pipe wall, and soil layer. The smaller
the thermal resistances are, the greater the conductive heat loss is, and the cooler the oil
tends to get.

Using an electrical circuit analogy, the combined thermal resistance of three material
layers arranged in series equals the sum of the individual thermal resistances:

Rcombined = Rwall + Rins. + Rsoil
T4

Aenil A A A A Reoy
T3

Upipe I W T Rrice

l:III"IS A A A A ins
T

P

Assuming the pipe wall is thin and its material is a good thermal conductor, you can safely
ignore the thermal resistance of the pipe wall. The combined thermal resistance is then
simply the sum of the insulation and soil contributions, R;,; and R;.

The thermal resistance of the insulation layer is directly proportional to its thickness, (D2-
D1)/2, and inversely proportional to its thermal conductivity, kInsulant. Likewise, the
thermal resistance of the soil layer is directly proportional to its thickness, z, and
inversely proportional to its thermal conductivity, kSoil.

The figure shows the relevant dimensions of the pipeline segment. Variable names match
those specified in the model. The inner insulation diameter, D1, is also the hydraulic
diameter of the pipeline segment.
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Iengi:h.
z — Soil layer thickness D1 — Inner insulation diameter
length — Pipeline segment length D2 — Outer insulation diameter

Simscape Model

The Simscape model ssc_tl 0il pipeline represents an insulated oil pipeline
segment buried underground. To open this model, at the MATLAB command prompt,
enter ssc_tl oil pipeline. The figure shows the model.

Mass Flow Rate

Source Tup

& Ay B A
B
Upstream H@ Ar==1B Ar==1B H I A
==l ==
Downstream
Soil Conduction Conduction Pipe (TL)

Temperature  Soil-Insulation  Insulation-Pipe

Tu
P Upstream |—> C]
-annsh'eam ol
Temperature

Optimal Pipeline Geometry for Heated Qil Transportation

1. Optimize pipe insulation inner diameter (se2 code)
2. Plot fluid properties (see code)

3. Explore simulation results using sscexplore

4. Learn more about this example
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The Pipe (TL) block represents the physical system in this example, that is, the oil
pipeline segment. Port A represents its inlet and port B its outlet. Port H represents
thermal conduction through the pipe wall. The block accounts for viscous heating.

The Mass Flow Rate Source (TL) block provides the flow rate through the pipe. The
Upstream block acts as a temperature source for the pipe inlet, while the Downstream
block acts as a temperature sink at the pipe outlet.

The Conduction Insulation-Pipe and Conduction Soil-Insulation blocks represent thermal
conduction through insulant and soil layers, respectively. These blocks appear in the
Simscape Thermal library as Conductive Heat Transfer. The Soil Temperature
(Temperature Source) block provides the temperature boundary condition at the soil
surface.

The Thermal Liquid Settings (TL) block provides the physical properties of the oil,
expressed as two-dimensional lookup tables containing the temperature and pressure
dependence of the properties. The table summarizes these blocks.

Block Description

Pipe (TL) Pipeline segment

Conduction Insulation-Pipe Insulant thermal conduction
Conduction Soil-Insulation Soil thermal conduction

Soil Temperature Soil temperature

Upstream Pipe inlet temperature sink
Downstream Pipe outlet temperature sink
Mass Flow Rate Source (TL) Oil mass flow rate

Thermal Liquid Settings (TL) Oil thermodynamic properties

Run Simulation

To analyze the performance of the oil pipeline segment, simulate the model. The Oil
Temperature scope plots the upstream and downstream oil temperatures. Open this
scope. The insulation thickness is near its optimal value, resulting in only a small
temperature change over a 1000 meter length. At a rate of ~0.020 K/km, oil temperature
changes approximately 2 K over a 100 kilometer length.
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Oil Temperature (K)
L L L . |

Plot Physical Properties Using Data Logging

As an alternative to using sensors and scopes, you can use Simscape data logging to view
how the physical properties of oil and other system variables change during simulation.

Select the Pipe (TL) block.

On the Simscape Block tab at the top of the model window, under Review Results,
click Results Explorer.

3 In the left pane of the Simscape Results Explorer window, expand the Pipe (TL)
node, which contains logged data for the Pipe (TL) block. Then expand the A and B
nodes, which correspond to the A and B ports of the block.

4  Select variable T under node A, which is the upstream temperature of the pipe, to
display its plot in the right pane of the Simscape Results Explorer window. To plot
multiple variables at once, press the Ctrl key and select variable T under node B,
which is the downstream temperature of the pipe.



File Edit View

Insert  Tools

[« Simscape Results Explorer: ssc_tl_oil_pipeline
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Heat Transfer in Insulated QOil Pipeline
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As expected, the plots in the right pane of the Simscape Results Explorer window are
equivalent to the Oil Temperature scope results.
5

You can also use the Simscape Results Explorer to plot other physical properties of
the oil as a function of simulation time. For example, rho_I is the oil density.
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[« Simscape Results Explorer: ssc_tl_oil_pipeline
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Note For more information about Simscape logging, see “About Simulation Data
Logging” on page 12-2.

Simulate Effects of Changing Insulation Diameter

Experiment with different values for the insulation inner diameter. By varying this
parameter, you offset the balance between viscous dissipation, which heats the oil, and

thermal conduction, which cools the oil.
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Open Model Explorer.

In the Model Hierarchy pane, select Base Workspace.
In the Contents pane, click the value of parameter D1.
Enter 0.20.

A W N R

By reducing the inner diameter of the insulation layer to 0.20, you increase the insulation
thickness, slowing down heat loss through the pipe wall via thermal conduction. Run the
simulation. Then, open the Oil Temperature scope and autoscale to view full plot.

Oil Temperature (K)

The new plot shows an oil temperature at the pipe outlet (top curve) that significantly
exceeds the temperature at the pipe inlet (bottom line). Viscous dissipation now
dominates the thermal energy balance in the pipeline segment. The new insulation
thickness poses a design problem: in a long pipeline, a 1.1 K/km heating rate can raise
the oil temperature substantially at the receiving end of the pipeline.

Try increasing the inner diameter of the insulation layer, D1, to 0.55. By increasing this
value, you decrease the insulation thickness, accelerating heat loss through the pipe wall
via thermal conduction. Then, run the simulation. Open the Oil Temperature scope and
autoscale to view the full plot.
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Oil Temperature (K)

The resulting plot shows that the oil temperature at the pipe outlet is now significantly
lower than that at the pipe inlet. Thermal conduction clearly dominates the thermal
energy balance in the pipeline segment. This insulation thickness also poses a design
issue: at a rate of 0.25K/km, oil flowing through a long pipeline will cool down
substantially.

Run Optimization Script

The model provides an optimization script that you can run to determine the optimal
inner diameter of the pipe insulation, D1. The script iterates the model simulation at
different D1 values, plotting the rates of viscous warming and conductive cooling against
each other. The intersection point between the two curves identifies the optimal insulation
thickness for the model:

1 In the model window, click Optimize to run the optimization script for the pipe
insulation inner diameter.

2-24



Heat Transfer in Insulated Oil Pipeline

Energy Transfer to/from Qil
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2 In the plot that opens, visually determine the horizontal-axis value for the
intersection point between the two curves.

The optimal inner diameter of the insulation layer is 0.37 m. Update parameter D1 to this
value:

Open Model Explorer.

In the Model Hierarchy pane, click Base Workspace.

In the Contents pane, click the value of D1.

Enter 0. 37.

A W N R

Now, run the simulation. Open the Oil Temperature scope and autoscale to view the full
plot. The temperature difference between the inlet and the outlet is negligible.
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Qil Temperature (K)
— - T

See Also

More About

. “Modeling Thermal Liquid Systems” on page 2-2
. “Thermal Liquid Library” on page 2-7
. “Thermal Liquid Modeling Framework” on page 2-11
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Manually Generate Fluid Property Tables

3-2

In this section...

“Fluid Property Tables” on page 3-2

“Steps for Generating Property Tables” on page 3-3

“Before Generating Property Tables” on page 3-3

“Create Fluid Property Functions” on page 3-3

“Set Property Table Criteria” on page 3-4

“Create Pressure-Normalized Internal Energy Grids” on page 3-5

“Map Grids Onto Pressure-Specific Internal Energy Space” on page 3-5
“Obtain Fluid Properties at Grid Points” on page 3-6

“Visualize Grids” on page 3-7

Fluid Property Tables

Fluid property tables provide the basic inputs to the Two-Phase Fluid Properties (2P)
block. If you have REFPROP software by the National Institute of Standards and
Technology installed, you can automatically generate these tables using the
twoPhaseFluidTables function. If you obtain the fluid properties from a different
source, such as CoolProp software, you can still generate the tables using a MATLAB
script. This tutorial shows how to create a script to generate the fluid temperature tables.

The tables must provide the fluid properties at discrete pressures and normalized internal
energies. The pressures must correspond to the table columns and the normalized
internal energies to the table rows. Setting pressure and normalized internal energy as
the independent variables enables you to specify the liquid and vapor phase property
tables on separate rectangular grids using MATLAB matrices.

The figure shows two fluid property grids in pressure-specific internal energy space (left)
and pressure-normalized internal energy space (right). If you obtain the fluid property
tables on a pressure-specific internal energy grid, you must transform that grid into its
pressure-normalized internal energy equivalent. In this tutorial, this transformation is
handled by the MATLAB script that you create.
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Steps for Generating Property Tables

The MATLAB script that you create in this tutorial performs the following tasks:

* Define property table criteria, including dimensions and pressure-specific internal
energy domain.

* Create rectangular grids in pressure-normalized internal energy space.

* Map the grids onto pressure-specific internal energy space.

* Obtain the fluid properties on the pressure-specific internal energy grids.

Before Generating Property Tables

You must obtain fluid property data in pressure-specific internal energy space, e.g.,
through direct calculation, from a proprietary database, or from a third-party source. In
this tutorial, you create four MATLAB functions to provide example property data. In a
real application, you must replace these functions with equivalent functions written to
access real property data.

Create Fluid Property Functions
Create the following MATLAB functions. These functions provide the example property

data you use in this tutorial. Ensure that the function files are on the MATLAB path. Use
the function names and code shown:

3-3
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* Name — liquidTemperature

function T = liquidTemperature(u, p)

% Returns artificial temperature data as a function
% of specific internal energy and pressure.

T =300 + 0.2*u - 0.08*p;

* Name — vaporTemperature

function T = vaporTemperature(u, p)

% Returns artificial temperature data as a function
% of specific internal energy and pressure.

T = -1000 + 0.6*u + 5*p;

* Name — saturatedLiquidInternalEnergy

function u = saturatedLiquidInternalEnergy(p)

% Returns artificial data for saturated liquid specific
% internal energy as a function of pressure.

u = sqrt(p)*400 + 150;

* Name — saturatedVaporInternalEnergy

function u = saturatedVaporInternalEnergy(p)

Returns artificial data for saturated vapor specific
internal energy as a function of pressure.

= -3*p."2 + 40*p + 2500;

o
“
o

s

o

Set Property Table Criteria

Start a new MATLAB script. Save the script in the same folder as the MATLAB functions
you created to generate the example fluid property data. In the script, define the criteria
for the property tables. Do this by entering the following code for the table dimensions
and pressure-specific internal energy valid ranges:

% Number of rows in the liquid property tables

mLiquid = 25;

% Number of rows in the vapor property tables

mVapor = 25;

% Number of columns in the liquid and vapor property tables
n = 60;

% Minimum specific internal energy, kJ/kg
uMin = 30;

% Maximum specific internal energy, kJ/kg
uMax = 4000;

% Minimum pressure, MPa

pMin = 0.01;

% Maximum pressure, MPa

pMax = 15;

% Store minimum and maximum values in structure fluidTables
fluidTables.uMin = uMin;



Manually Generate Fluid Property Tables

fluidTables.uMax = uMax;
fluidTables.pMin = pMin;
fluidTables.pMax = pMax;

Create Pressure-Normalized Internal Energy Grids

Define the pressure and normalized internal energy vectors for the grid. These vectors
provide the discrete pressure and normalized internal energy values associated with each
grid point. The pressure vector is logarithmically spaced due to the wide pressure range
considered in this example. However, you can use any type of spacing that suits your
data. In your MATLAB script, add this code:

% Pressure vector, logarithmically spaced
fluidTables.p = logspace(logl0(pMin), loglO(pMax), n);

% Normalized internal energy vectors, linearly spaced
fluidTables.liquid.unorm = linspace(-1, 0, mLiquid)';
fluidTables.vapor.unorm = linspace(1l, 2, mVapor)';

Map Grids Onto Pressure-Specific Internal Energy Space

Obtain the saturated liquid and vapor specific internal energies as functions of pressure.
The saturation internal energies enable you to map the normalized internal energy
vectors into equivalent vectors in specific internal energy space. In your MATLAB script,
add this code:

% Initialize the saturation internal energies of the liquid and vapor phases
fluidTables.liquid.u sat = zeros(1l, n);
fluidTables.vapor.u_sat = zeros(1l, n);

% Obtain the saturation internal energies at the pressure vector values
for j =1 :n
fluidTables.liquid.u sat(j) = saturatedLiquidInternalEnergy(fluidTables.p(j));
fluidTables.vapor.u sat(j) = saturatedVaporInternalEnergy(fluidTables.p(j));
end

This code calls two functions written to generate example data. Before using this code in
a real application, you must replace the functions with equivalent expressions capable of
accessing real data. The functions you must replace are:

* saturatedLiquidInternalEnergy

* saturatedVaporInternalEnergy

Map the normalized internal energy vectors onto equivalent specific internal energy
vectors. In your MATLAB script, add this code:
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% Map pressure-specific internal energy grid onto

% pressure-normalized internal energy space
fluidTables.liquid.u = (fluidTables.liquid.unorm + 1)*...
(fluidTables.liquid.u sat - uMin) + uMin;
fluidTables.vapor.u = (fluidTables.vapor.unorm - 2)*...
(uMax - fluidTables.vapor.u sat) + uMax;

Obtain Fluid Properties at Grid Points

You can now obtain the fluid properties at each grid point. The following code shows how
to generate the temperature tables for the liquid and vapor phases. Use a similar
approach to generate the remaining fluid property tables. In your MATLAB script, add
this code:

% Obtain temperature tables for the liquid and vapor phases
for j =1 :n
for i = 1 : mLiquid
fluidTables.liquid.T(1i,j) =
liquidTemperature(fluidTables. llquld u(1 j), fluidTables.p(j));
end
for i = 1 : mVapor
fluidTables.vapor.T(1i,j) =
vaporTemperature(fluidTables.vapor. u(1 j), fluidTables.p(j));
end
end

This code calls two functions written to generate example data. Before using this code in
a real application, you must replace the functions with equivalent expressions capable of
accessing real data. The functions you must replace are:

* liquidTemperature
* vaporTemperature

To view the temperature tables generated, first run the script. Then, at the MATLAB
command prompt, enter fluidTables. MATLAB lists the contents of the fluidTables
structure array.

fluidTables =
uMin: 30
uMax: 4000
pMin: 0.0100
pMax: 15

p: [1x20 double]
liquid: [1x1 struct]
vapor: [1x1 struct]
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To list the property tables stored in the 1iquidsubstructure, at the MATLAB command
prompt enter fluidTables. liquid.

305.9992 305.9988 305.9983 305.9975
309.5548 309.7430 309.9711 310.2475
313.1103 313.4872 313.9440 314.4976
316.6659 317.2314 317.9169 318.747

Visualize Grids

To visualize the original grid in pressure-normalized internal energy space, at the
MATLAB command prompt enter this code:

% Define p and unorm matrices with the grid
% point coordinates

pLiquid = repmat(fluidTables.p, mLiquid, 1);
pVapor = repmat(fluidTables.p, mVapor, 1);

unormLiquid = repmat(fluidTables.liquid.unorm, 1, n);
unormVapor = repmat(fluidTables.vapor.unorm, 1, n);

% Plot grid
figure;
hold on;

plot(unormLiquid, pLiquid, 'b.');
plot(unormVapor, pVapor, 'b.');

plot(zeros(1l, n), fluidTables.p, 'k-');
plot(ones(1l, n), fluidTables.p, 'k-');

hold off;

set(gca, 'yscale', 'log');
xlabel('Normalized Internal Energy');
ylabel('Pressure');

title('Grid in Normalized Internal Energy');

A figure opens with the pressure-normalized internal energy grid.
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To visualize the transformed grid in pressure-specific internal energy space, at the
MATLAB command prompt enter this code:

% Define horizontal and vertical axes

% Plot grid
figure;
hold on;

plot(fluidTables.liquid.u, pLiquid, 'b.');
plot(fluidTables.vapor.u, pVapor, 'b.');

plot(fluidtables.liquid.u sat, fluidTables.p, 'k-');
plot(fluidtables.vapor.u sat, fluidTables.p, 'k-');

hold off;

set(gca, 'yscale', 'log');
xlabel('Specific Internal Energy');
ylabel('Pressure');

title('Grid in Specific Internal Energy');

A figure opens with the pressure-specific internal energy grid.

3-8



Manually Generate Fluid Property Tables

Fressure

Grid in Specific Internal Energy

I
L T
Y

P T Y
S L
P T

S

« & & & e s aa
N

L T R
N R

& & & & 4 4 & =

L L L

1] 500 1000 1500 2000 2500 3000 3500 4000
Specific Internal Energy






Gas System Models
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* “Change Flow Boundary Conditions” on page 4-20
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Modeling Gas Systems

In this section...

“Intended Applications” on page 4-2

“Network Variables” on page 4-2

“Gas Property Models” on page 4-3

“Blocks with Gas Volume” on page 4-5

“Reference Node and Grounding Rules” on page 4-5

“Initial Conditions for Blocks with Finite Gas Volume” on page 4-6
“Choked Flow” on page 4-7

“Flow Reversal” on page 4-13

Intended Applications

The Gas library contains basic elements, such as orifices, chambers, and pneumatic-
mechanical converters, as well as sensors and sources. Use these blocks to model gas
systems, for applications such as:

* Pneumatic actuation of mechanical systems

* Natural gas transport through pipe networks

* Gas turbines for power generation

* Air cooling of thermal components

You specify the gas properties in the connected loop by using the Gas Properties (G)

block. This block lets you choose between three idealization levels: perfect gas,
semiperfect gas, or real gas (see “Gas Property Models” on page 4-3).

Network Variables
The Across variables are pressure and temperature, and the Through variables are mass

flow rate and energy flow rate. Note that these choices result in a pseudo-bond graph,
because the product of pressure and mass flow rate is not power.

4-2



Modeling Gas Systems

Gas Property Models

The Gas library supports perfect gas, semiperfect gas, and real gas within the same gas
domain in order to cover a wide range of modeling requirements. The three gas property
models provide trade-offs between simulation speed and accuracy. They also enable the
incremental workflow: you start with a simple model, which requires minimal information
about the working gas, and then build upon the model when more detailed gas property
data becomes available.

You select the gas property model by using the Gas Properties (G) block, which specifies
the gas properties in the connected circuit.

The following table summarizes the different assumptions for each gas property model.
* Thermal equation of state indicates the relationship of density with temperature and
pressure.

» Caloric equation of state indicates the relationship of specific heat capacity with
temperature and pressure.

* Transport properties indicate the relationship between dynamic viscosity and thermal
conductivity with temperature and pressure.

Gas Property Thermal Equation |Caloric Equation of |Transport

Model of State State Properties

Perfect Ideal gas law Constant Constant

Semiperfect Ideal gas law 1-D table lookup by |1-D table lookup by

temperature temperature

Real 2-D table lookup by |2-D table lookup by |2-D table lookup by
temperature and temperature and temperature and
pressure pressure pressure

The ideal gas law is implemented in the Simscape Foundation Gas library as

p = ZpRT
where:

* pisthe pressure.
* Zis the compressibility factor.
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* Ris the specific gas constant.

* Tis the temperature.

The compressibility factor, Z, is typically a function of pressure and temperature. It
accounts for the deviation from ideal gas behavior. The gas is ideal when Z = 1. In the
perfect and semiperfect gas property models, Z must be constant but it does not have to
be equal to 1. For example, if you are modeling a nonideal gas (Z # 1) but the
temperature and pressure of the system do not vary significantly, you can use the perfect
gas model and specify an appropriate value of Z. The following table lists the
compressibility factor Z for various gases at 293.15 K and 0.101325 MPa:

Gas Compressibility Factor
Dry Air 0.99962
Carbon Dioxide 0.99467
Oxygen 0.99930
Hydrogen 1.00060
Helium 1.00049
Methane 0.99814
Natural Gas 0.99797
Ammonia 0.98871
R-134a 0.97814

Using the perfect gas model, with the constant value of Z adjusted based on the type of
gas and the operating conditions, lets you avoid the additional complexity and
computational cost of moving to the semiperfect or real gas property model.

The perfect gas property model is a good starting choice when modeling a gas network
because it is simple, computationally efficient, and requires limited information about the
working gas. It is correct for monatomic gases and, typically, it is sufficiently accurate for
gases such as dry air, carbon dioxide, oxygen, hydrogen, helium, methane, natural gas,
and so on, at standard conditions.

When the gas network is operating near the saturation boundary or is operating over a
very wide temperature range, the working gas can exhibit mild nonideal behavior. In this
case, after successfully simulating the gas network with the perfect gas property model,
consider switching to the semiperfect gas property model.
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Finally, consider switching to the real gas property model if the working gas is expected
to exhibit strongly nonideal behavior, such as heavy gases with large molecules. This
model is the most expensive in terms of computational cost and requires detailed
information about the working gas, because it uses 2-D interpolation for all properties.

Blocks with Gas Volume

Components in the gas domain are modeled using control volumes. The control volume
encompasses the gas inside the component and separates it from the surrounding
environment and other components. Gas flows and heat flows across the control surface
are represented by ports. The gas volume inside the component is represented using an
internal node, which provides the gas pressure and temperature inside the component.
This internal node is not visible, but you can access its parameters and variables using
Simscape data logging. For more information, see About Simulation Data Logging on
page 12-2.

The following blocks in the Gas library are modeled as components with a gas volume. In
the case of Controlled Reservoir (G) and Reservoir (G), the volume is assumed to be
infinitely large.

Block Gas Volume
Constant Volume Chamber (G) Finite

Pipe (G) Finite
Rotational Mechanical Converter (G) Finite
Translational Mechanical Converter (G) Finite
Reservoir (G) Infinite
Controlled Reservoir (G) Infinite

Other components have relatively small gas volumes, so that gas entering the component
spends negligible time inside the component before exiting. These components are
considered quasi-steady-state and they do not have an internal node.

Reference Node and Grounding Rules

Unlike other domains, where each topologically distinct circuit within a domain must
contain at least one reference block, gas networks have different grounding rules.
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Blocks with a gas volume contain an internal node, which provides the gas pressure and
temperature inside the component and therefore serves as a reference node for the gas
network. Each connected gas network must have at least one reference node. This means
that each connected gas network must have at least one of the blocks listed in “Blocks
with Gas Volume” on page 4-5. In other words, a gas network that contains no gas volume
is an invalid gas network.

The Foundation Gas library contains the Absolute Reference (G) block but, unlike other
domains, you do not use it for grounding gas circuits. The purpose of the Absolute
Reference (G) block is to provide a reference for the Pressure & Temperature Sensor (G).
If you use the Absolute Reference (G) block elsewhere in a gas network, it will trigger a
simulation assertion because gas pressure and temperature cannot be at absolute zero.

Initial Conditions for Blocks with Finite Gas Volume

This section discusses the specific initialization requirements for blocks modeled with
finite gas volume. These blocks are listed in “Blocks with Gas Volume” on page 4-5.

The state of the gas volume evolves dynamically based on interactions with connected
blocks via mass and energy flows. The time constants depend on the compressibility and
thermal capacity of the gas volume.

The state of the gas volume is represented by differential variables at the internal node of
the block. As differential variables, they require initial conditions to be specified prior to
the start of simulation. The dialog box of each block modeled with finite gas volume has a
Variables tab, which lists three variables:

* Pressure of gas volume
+ Temperature of gas volume
* Density of gas volume

By default, Pressure of gas volume and Temperature of gas volume have high
priority, with target values equal to the standard condition (0.101325 MPa and 293.15
K). You can adjust the target values to represent the appropriate initial state of the gas
volume for the block. Density of gas volume has the default priority None because only
the initial conditions of two of the three variables are needed to completely determine the
initial state of the gas volume. If desired, an alternative way to specify the initial
conditions is to change Density of gas volume to high priority with an appropriate
target value, and then change either Pressure of gas volume or Temperature of gas
volume to a priority of none.
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It is important that only two of the three variables have their priorities set to High for
each block with a finite gas volume. Placing high-priority constraints on all three
variables results in over-specification, with the solver unable to find an initialization
solution that satisfies the desired initial values. Conversely, placing high-priority
constraint only on one variable makes the system under-specified, and the solver might
resolve the variables with arbitrary and unexpected initial values. For more information
on variable initialization and dealing with over-specification, see “Initialize Variables for a
Mass-Spring-Damper System” on page 7-7.

In blocks that are modeled with an infinitely large gas volume, the state of the gas volume
is assumed quasisteady and there is no need to specify an initial condition.

Choked Flow

Gas flow through Local Restriction (G), Variable Local Restriction (G), or Pipe (G) blocks
can become choked. Choking occurs when the flow velocity reaches the local speed of
sound. When the flow is choked, the velocity at the point of choking cannot increase any
further. However, the mass flow rate can still increase if the density of the gas increases.
This can be achieved, for example, by increasing the pressure upstream of the point of
choking. The effect of choking on a gas network is that the mass flow rate through the
branch containing the choked block depends completely on the upstream pressure and
temperature. As long as the choking condition is maintained, this choked mass flow rate
is independent of any changes occurring in the pressure downstream.

The following model illustrates the choked flow. In this model, the Ramp block has a slope
of 0.005 and the start time of 10. The Simulink-PS Converter block has Input signal unit
set to Mpa. All other blocks have default parameter values. Simulation time is 50 s. When
you simulate the model, the pressure at port A of the Local Restriction (G) block increases
linearly from atmospheric pressure, starting at 10 s. The pressure at port B is fixed at
atmospheric pressure.
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The following illustration shows the logged simulation data for the Local Restriction (G)
block. The Mach number at the restriction (Mach_R) reaches 1 at around 20 s, indicating
that the flow is choked. The mass flow rate (mdot_A) before the flow is choked follows
the typical quadratic behavior with respect to an increasing pressure difference.
However, the mass flow rate after the flow is choked becomes linear because the choked
mass flow rate depends only on the upstream pressure and temperature, and the
upstream pressure is increasing linearly.
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The fact that the choked mass flow rate depends only on the upstream conditions can
cause an incompatibility with a Mass Flow Rate Source (G) or a Controlled Mass Flow
Rate Source (G) connected downstream of the choked block. Consider the model shown in

the next illustration, which contains the Controlled Mass Flow Rate Source (G) block
instead of the Controlled Pressure Source (G).
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If the source commanded an increasing mass flow rate from left to right through the
Local Restriction (G), the simulation would succeed even if the flow became choked
because the Controlled Mass Flow Rate Source (G) would be upstream of the choked
block. However, in this model the Gain block reverses the flow direction, so that the
Controlled Mass Flow Rate Source (G) is downstream of the choked block. The pressure
upstream of the Local Restriction (G) is fixed at atmospheric pressure. Therefore, the
choked mass flow rate in this situation is constant. As the commanded mass flow rate
increases, eventually it will become greater than this constant value of choked mass flow
rate. At this point, the commanded mass flow rate and the choked mass flow rate cannot
be reconciled and the simulation fails. Viewing the logged simulation data in the
Simscape Results Explorer shows that simulation fails just at the point when the Mach
number reaches 1 and the flow becomes choked.
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In general, if a model is likely to choke, use pressure sources rather than mass flow rate
sources. If a model contains mass flow rate source blocks and simulation fails, use the
Simscape Results Explorer to inspect the Mach number variables in all Local Restriction
(G), Variable Local Restriction (G), and Pipe (G) blocks connected along the same branch
as the mass flow rate source. If the simulation failure occurs when the Mach number
reaches 1, it is likely that there is a downstream mass flow rate source trying to command
a mass flow rate greater than the possible choked mass flow rate.

The Mach number variable for the restriction blocks is called Mach_R. The Pipe (G) block
has two Mach number variables, Mach_A and Mach_B, representing the Mach number
at port A and port B, respectively.
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Flow Reversal

The flow of gas through the circuit carries energy from one gas volume to another gas
volume. Therefore, the energy flow rate between two connected blocks depends on the
direction of flow. If the gas flows from block A to block B, then the energy flow rate
between the two blocks is based on the specific total enthalpy of block A. Conversely, if
the gas flows from block B to block A, then the energy flow rate between the two blocks is
based on the specific total enthalpy of block B. To smooth the transition for simulation
robustness, the energy flow rate also includes a contribution based on the difference in
the specific total enthalpies of the two blocks at low mass flow rates. The smoothing
region is controlled by the Gas Properties (G) block parameter Mach number threshold
for flow reversal.

A consequence of this approach is that the temperature of a node between two connected
blocks represents the temperature of the gas volume upstream of that node. If there are
two or more upstream flow paths merging at the node, then the temperature at the node
represents the weighted average temperature based on the ideal mixing of the merging
gas flows.

Simulation robustness can be challenging for models that exhibit quick flow reversals and
large temperature differences between blocks. Quick flow reversals may be a result of
having low flow resistances (for example, short pipes) between large gas volumes. Large
temperature differences may be a result of the energy added by sources to maintain large
pressure differences in a model with little heat dissipation. In these models, it may be
necessary to increase the Mach number threshold for flow reversal parameter value
to avoid simulation failure.

See Also

Related Examples

. “Simple Gas Model” on page 4-14

. “Change Flow Boundary Conditions” on page 4-20
. Choked Flow in Gas Orifice

. Pneumatic Actuation Circuit

. Pneumatic Motor Circuit
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Simple Gas Model

In this example, you create a simple open-loop gas model. The model consists of a local
restriction between two reservoirs. The local restriction represents a valve or an orifice.
The reservoir blocks set up the boundary conditions for the local restriction.

Reservoir blocks are useful for setting up pressure and temperature boundary conditions.
If you want the pressure and temperature boundary conditions to change over time, use
controlled reservoir blocks.

To open the completed model, in the MATLAB Command Window, type
ssc_gas_ tutorial stepl.

To create this model:

1 Inthe MATLAB Command Window, type:

SSC_new
untitled
® @] untitled -
@
I L
El Simulink-P5 PE-Simulink
Converter Converter Scope
=3
(]
Salver
Configuration
Simscape Library Resources
=] 1. Find components in the Simscape library.
For more information, see Physical Modeling - Blocks.
|I_—| 2. Connect the compenents to form a physical network.
For more information, see Essential Steps for Constructing a Physical Model.
» 3. Explore simulation results using sscexplore
Ready 100% VariableStepAuto
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Simple Gas Model

Note By default, Simulink Editor hides the automatic block names in model
diagrams. To display hidden block names for training purposes, clear the Hide
Automatic Block Names check box. For more information, see “Manage Block
Names” (Simulink).

Delete the Simulink-PS Converter block.

To reduce diagram clutter, right-click the PS-Simulink Converter block and, from the
context menu, select Format > Show Block Name > Off.

4  Add the following blocks.

Block Name Library Quantity
Local Restriction (G) Gas/Elements 1
Reservoir (G) Gas/Elements 2
Gas Properties (G) Gas/Utilities 1
Mass & Energy Flow Rate Sensor (G) Gas/Sensors 1

5 Change the reservoir block names and connect the blocks as shown in the diagram.

A

A A B e
.. | —— '\.‘,_._._\J]"‘
| TPhip Downstream

Local Restriction Resarvair

Upsiream - Mass & Energy Flow
Resarvair () Rate Sanzor (G)
2t

. Mass Flow Rate
Gas Properties (3)

flx)=0 p—

Solver
Configuration

6 Leave the Downstream Reservoir block at standard atmospheric conditions.
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Block Parameters: Downstream Reservoir @
Reservoir (G)
This block sets constant boundary conditions in a gas network. The volume of gas inside the reservoir is assumed

infinite. Therefore, the flow is assumed quasi-steady. Gas leaves the reservoir at the reservoir pressure and the

reservoir temperature. Gas enters the reservoir at the reservoir pressure, but its temperature is determined by the
gas network upstream.

Source code

Settings
Parameters

Reservoir pressure specification: | Atmospheric pressure -

Reservoir temperature: 293.15 4

Cross-sectional area at port A: 0.01 m™2

[ OK ” Cancel H Help l Apply

7 Change the Upstream Reservoir block to have a specified pressure of 0.12 MPa and
temperature of 400 K.
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Block Parameters: Upstrearn Reservoir @

Reservoir (G)

This block sets constant boundary conditions in a gas network. The volume of gas inside the reservoir is assumed
infinite. Therefore, the flow is assumed quasi-steady. Gas leaves the reservoir at the reservoir pressure and the

reservoir temperature. Gas enters the reservoir at the reservoir pressure, but its temperature is determined by the
gas network upstream.

Source code

Settings
Parameters
Reservoir pressure specification: | Specified pressure -
Reservoir pressure: 0.12 MPa -
Reservoir temperature: 400 K -
Cross-sectional area at port A: 0.01 m™2 -

[ OK ” Cancel H Help l Apply

8 Simulate the model. The mass flow rate through the restriction is approximately 0.13
kg/s.
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See Also

Related Examples
. “Change Flow Boundary Conditions” on page 4-20
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See Also

More About
. “Modeling Gas Systems” on page 4-2
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Change Flow Boundary Conditions

In the “Simple Gas Model” on page 4-14 tutorial, you created a simple open-loop gas
model. This example shows how to modify this model by changing the gas flow boundary
conditions without affecting temperature. To open the completed model, in the MATLAB
Command Window, type ssc_gas_tutorial step2.

To change the upstream boundary conditions from specified pressure and temperature to
specified mass flow rate and temperature:

1 Open the model created in the “Simple Gas Model” on page 4-14 tutorial, by typing
ssc_gas_tutorial stepl.

B

a2 Ay B A=
. | TPhik Downstream
Upstraam Local H;stnctlon Mass & Energy Flow Resarvaoir
Resarvoir () Rate Sensor (G)
» 1

. . Mass Flow Rata
Gas Properties (G)

fix)=0 p—

Solver
Configuration

2 Change the Upstream Reservoir block back to Atmospheric pressure, but keep
the temperature of 400 K.

3 Add a Mass Flow Rate Source (G) block upstream from the local restriction. Set the
Mass flow rate parameter 0. 15 kg/s.
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Change Flow Boundary Conditions

Block Parameters: Mass Flow Rate Source (G) @
Mass Flow Rate Source (G)

This block represents an ideal mechanical energy source in a gas network that can maintain a constant mass flow
rate regardless of the pressure differential. There is no flow resistance and no heat exchange with the
environment. A positive mass flow rate causes gas to flow from port A to port B.

Source code

Settings
Parameters
Power added: Isentropic power -
Mass flow rate: 0.15 ka/s -
Cross-sectional area at port A: 0.01 m™2 -
Cross-sectional area at port B: 0.01 m™2 -

[ OK ” Cancel H Help l Apply

4  Simulate the model. The mass flow rate through the restriction is now 0.15 kg/s.
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To measure the absolute pressure and temperature upstream of the local restriction,
add a Pressure & Temperature Sensor (G) block and connect an Absolute Reference
(G) block to the B node of the sensor. Duplicate the converter-scope block pair to add
the Pressure and Temperature scopes to the model, as shown in the diagram.
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6 Simulate the model. To drive 0.15 kg/s of gas through the restriction, the Mass Flow

Rate Source (G) block increased the pressure from atmospheric (as specified by the
Upstream Reservoir block) to almost 0.13 MPa.
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The temperature upstream of the restriction is approximately 427 K, not 400 K (as

specified by the Upstream Reservoir block).
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7 The reason for the temperature increase is that the source needs to do work, to bring
the pressure up and drive the desired flow rate through the system, which adds
energy to the gas. This way, the source can be treated as an idealized compressor or
pump. However, our intent is just to specify an upstream boundary condition of 400 K
and 0.15 kg/s, regardless of whether there is actually a compressor upstream or not.
Therefore, in the Mass Flow Rate Source (G) block dialog, switch the Power added
parameter to None.
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Block Parameters: Mass Flow Rate Source (G) @
Mass Flow Rate Source (G)

This block represents an ideal mechanical energy source in a gas network that can maintain a constant mass flow
rate regardless of the pressure differential. There is no flow resistance and no heat exchange with the
environment. A positive mass flow rate causes gas to flow from port A to port B.

Source code

Settings
Parameters
Power added: Mone -
Mass flow rate: 0.15 ka/s -
Cross-sectional area at port A: 0.01 m™2 -
Cross-sectional area at port B: 0.01 m™2 -

[ OK ” Cancel H Help l Apply

8 Simulate the model. The temperature upstream of the restriction is now 400 K.
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See Also
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. “Simple Gas Model” on page 4-14
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* “Modeling Moist Air Systems” on page 5-2
* “Modeling Moisture and Trace Gas Levels” on page 5-18
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Modeling Moist Air Systems

5-2

In this section...

“Intended Applications” on page 5-2

“Network Variables for Moist Air Domain” on page 5-3

“Moist Air Properties” on page 5-3

“Humidity and Trace Gas Property Definitions” on page 5-5

“Blocks with Moist Air Volume” on page 5-7

“Reference Node and Grounding Rules” on page 5-8

“Initial Conditions for Blocks with Finite Moist Air Volume” on page 5-9
“Saturation and Condensation” on page 5-10

“Choked Flow” on page 5-12

Intended Applications

The Moist Air library contains basic elements, such as reservoirs, chambers, and
pneumatic-mechanical converters, as well as sensors and sources. Use these blocks to
model HVAC systems, environmental control systems, and other similar applications.

Relevant industries include automotive, aerospace, building. The key aspect of these
applications is the need to keep track of humidity levels in different parts of the model
over time. The moist air domain is a two-species gas domain, where the species are air
and water vapor. Furthermore, the water vapor can condense out of the system. This
effect is important to HVAC applications because latent heat of water condensation
affects the thermodynamics of the fluid flow.

The moist air mixture is composed of dry air and water vapor. Trace gas is an optional
third species in the moist air mixture. Example of the trace gas usage is to track carbon
dioxide and pollutants such as nitrogen oxides (NOx). You specify the moist air properties
in the connected loop by using the Moist Air Properties (MA) block. This block also gives
you several options for modeling trace gas properties. You increase and decrease levels of
moisture and trace gas in the air mixture by using the blocks in the Moisture & Trace Gas
Sources library (see “Modeling Moisture and Trace Gas Levels” on page 5-18).

All gas species in the mixture are assumed to be semiperfect gas. This means that
pressure, temperature, and density obey the ideal gas law. Other properties—specific
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enthalpy, specific heat, dynamic viscosity, and thermal conductivity—are functions of
temperature only.

Use the Moist Air domain and library to perform the following tasks:
* Develop requirements of an HVAC system for an environment, such as a building,

automobile, or aircraft

* Ensure acceptable temperature, pressure, humidity, and condensation within the
environment

* Determine capacity of an HVAC system to match heating, cooling, and
dehumidification requirements

* Analyze HVAC system performance, efficiency, and cost

* Validate HVAC system model against test data

* Design and simulate HVAC components and tune component models to test rig data
* Simulate models including an HVAC system, environment model, and controller

* Design controllers for valves, fans, and compressors to ensure safe and optimal
operation

* Perform HIL testing

Network Variables for Moist Air Domain

The Across variables are pressure, temperature, specific humidity (water vapor mass
fraction), and trace gas mass fraction. The Through variables are mixture mass flow rate,
mixture energy flow rate, water vapor mass flow rate, and trace gas mass flow rate. Note
that these choices result in a pseudo-bond graph, because the product of Across and
Through variables is not power.

There is a separate domain for modeling moisture and trace gas levels in moist air
systems. For more information, see “Moist Air Source Domain” on page 5-18.

Moist Air Properties

The default fluid properties for the moist air library correspond to dry air, water vapor,
and carbon dioxide (the optional trace gas). However, you can modify the fluid properties
in the Moist Air Properties (MA) block to model mixtures of other gases and vapors. You
can replace dry air and carbon dioxide with other gas species. You can also change water
vapor to another condensing vapor (or even to another noncondensing gas species, by
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supplying large enough values for the saturation pressure, so that it would never reach
saturation during simulation). In this way, you can model any three-species gas mixture.

All gas species in the mixture are assumed to be semiperfect gas. This means that
pressure p, temperature T, and density p of the constituents obey the ideal gas law:

Pa = PaRqT,
Pw = pwRWT,

where R is the specific gas constant. Subscripts a, w, and g indicate dry air, water vapor,
and trace gas, respectively.

Dalton’s law applies to ideal gases:
P =pg+pwtpg-

Therefore, the mixture also obeys the ideal gas law:
p = pRT,

where:

P =pPgt pw Tt 0g
R = X4Rq + xRy + XgRg .

Xa, Xy, and xg are mass fractions of dry air, water vapor, and trace gas, respectively.

Other properties of each constituent are assumed to be functions of temperature only:

*  hy(T), hy(T), hy(T) — Specific enthalpy of dry air, water vapor, and trace gas,
respectively.

*  11,(T), p(T), pg(T) — Dynamic viscosity of dry air, water vapor, and trace gas,
respectively.

* ky(T), ky(T), ky(T) — Thermal conductivity of dry air, water vapor, and trace gas,
respectively.

For ideal gases, the enthalpy of mixing is zero. Therefore, the mixture specific enthalpy is
a combination of the constituent specific enthalpy based on their mass fractions:

h = xghg(T) + xwhy(T) + Xghy(T) .
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You can compute the entropy of mixing from the mole fractions:

As™X = — x;Rgln(yg) + XwRuln(yw) + XgRgln(yg),
where y,, Yy, and y; are mole fractions of dry air, water vapor, and trace gas, respectively.
Therefore, the mixture specific entropy is

S = XgSa + XwSw + XgSg + As™X

Humidity and Trace Gas Property Definitions

The equations describing humidity and trace gas properties use these symbols and
property definitions. Subscripts a, w, and g indicate the properties of dry air, water vapor,
and trace gas, respectively. Subscript ws indicates water vapor at saturation.

Symbol Property Definition

p Pressure Pressure of the moist air mixture (as opposed to
the partial pressure of water vapor or partial
pressure of trace gas).

T Temperature The dry-bulb temperature, which is the
temperature in the common thermodynamic
sense. (The wet-bulb temperature is a different
quantity, which measures the moisture level.)

R Specific gas Universal gas constant divided by the molar
constant mass of the species. Specific gas constant of the
mixture is

R = xqRq + xwRw + XgRyg .

3-5
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Symbol

Property

Definition

Pw

Relative humidity

Moles of water vapor as a fraction of the moles of
water vapor needed to saturate at the same
temperature. Water vapor saturation pressure is
a property of water and is a function of
temperature only, p,s(T). The ideal gas law (due
to the assumed semiperfect gas) means that mole
fraction is equivalent to partial pressure fraction.
The mole fraction y,, cannot be greater than 1.
Therefore, at high temperature or low pressure,
it may not be possible to achieve relative
humidity of 1.

= Iwl _ WD
YwslT  Pws(T)

O

Specific humidity

Mass of water vapor as a fraction of the total
mass of the moist air mixture. It is another term
for water vapor mass fraction. It may not be
possible to achieve specific humidity of 1 due to
saturation.

M
XW=WW=_

Yw

Water vapor mole
fraction

Moles of water vapor as a fraction of the total
moles of the moist air mixture. It may not be
possible to achieve water vapor mole fraction of
1 due to saturation.

Ny _ Pw

Yw = N D

Ty

Humidity ratio

Ratio of mass of water vapor to mass of dry air
and trace gas. For conditions in typical HVAC
applications, it is close to the specific humidity.

W= M+ M,
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Symbol Property Definition
Pw Absolute humidity |Mass of water vapor over the volume of the moist
air mixture. It is another term for water vapor
density.
My,
Pw="v"
Xq Trace gas mass Mass of trace gas as a fraction of the total mass
fraction of the moist air mixture.
9 M m
Vg Trace gas mole Moles of trace gas as a fraction of the total moles
fraction of the moist air mixture.
Ng _p
—_9_rg
V9= N =p

Water vapor mole fraction is related to specific humidity (that is, to mass fraction) as
follows:

Trace gas mole fraction is related to trace gas mass fraction as follows:

R
— -9
Yg=RXg-

Blocks with Moist Air Volume

Components in the moist air domain are modeled using control volumes. A control volume
encompasses the moist air inside the component and separates it from the surrounding
environment and other components. Air flows and heat flows across the control surface
are represented by ports. The moist air volume inside the component is represented using
an internal node. This internal node is not visible, but you can access its parameters and
variables using Simscape data logging. For more information, see About Simulation Data
Logging on page 12-2.

5-7
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For a moist air volume, you must specify the pressure, temperature, moisture level, and
trace gas level. For more information, see “Initial Conditions for Blocks with Finite Moist
Air Volume” on page 5-9.

The following blocks in the Moist Air library are modeled as components with a moist air
volume. In the case of Controlled Reservoir (MA) and Reservoir (MA) blocks, the volume
is assumed to be infinitely large.

Block Gas Volume
Constant Volume Chamber (MA) Finite

Pipe (MA) Finite
Rotational Mechanical Converter (MA) Finite
Translational Mechanical Converter (MA) |Finite
Reservoir (MA) Infinite
Controlled Reservoir (MA) Infinite

Other components have relatively small moist air volumes, so that the air mixture
entering the component spends negligible time inside the component before exiting.
These components are considered quasi-steady-state and they do not have an internal
node.

Reference Node and Grounding Rules

Unlike most other domains, where each topologically distinct circuit within a domain
must contain at least one reference block, moist air networks have different grounding
rules.

Blocks with a moist air volume contain an internal node, which provides the pressure,
temperature, moisture level, and trace gas level inside the component and therefore
serves as a reference node for the moist air network. Each connected moist air network
must have at least one reference node. This means that each connected moist air network
must have at least one of the blocks listed in “Blocks with Moist Air Volume” on page 5-7.
In other words, a moist air network that contains no air volume is an invalid network.

The Foundation Moist Air library contains the Absolute Reference (MA) block but, unlike
other domains, you do not use it for grounding moist air circuits. The purpose of the
Absolute Reference (MA) block is to provide a reference for the Pressure & Temperature
Sensor (MA) block. If you use the Absolute Reference (MA) block elsewhere in a moist air
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network, it triggers a simulation assertion because air mixture pressure and temperature
cannot be at absolute zero.

Initial Conditions for Blocks with Finite Moist Air Volume

This section discusses the specific initialization requirements for blocks modeled with
finite moist air volume. These blocks are listed in “Blocks with Moist Air Volume” on page
5-7.

The fluid states of a moist air volume are pressure, temperature, moisture level, and trace
gas level. These fluid states evolve dynamically based on the mixture mass conservation,
water vapor mass conservation, trace gas mass conservation, and mixture energy
conservation. Therefore, it is necessary to specify initial conditions for these blocks, to
define the initial fluid states. The dialog box of each block modeled with finite moist air
volume has a Variables tab, which lets you specify the initial conditions. To ensure
consistent initial conditions, specify high priority targets for four variables:

¢ Pressure of moist air volume

* Temperature of moist air volume
* One of the variables representing the moisture level:

* Relative humidity of moist air volume
* Specific humidity of moist air volume
*  Water vapor mole fraction of moist air volume
* Humidity ratio of moist air volume
* One of the variables representing the trace gas level:

* Trace gas mass fraction of moist air volume
+ Trace gas mole fraction of moist air volume

It is important that only four variables, as described, have their priorities set to High for
each block with a finite moist air volume. Placing high-priority constraints on additional
variables results in overspecification, with the solver being unable to find an initialization
solution that satisfies the desired initial values. Set the priority of remaining variables to
None. You can use the equations in “Humidity and Trace Gas Property Definitions” on
page 5-5 and “Trace Gas Modeling Options” on page 5-19 to convert values from one
moisture or trace gas measure to another. For more information on variable initialization
and dealing with overspecification, see “Initialize Variables for a Mass-Spring-Damper
System” on page 7-7.
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The fluid states of moist air volume in these blocks are reported by the physical signal
output port F. Connect port F to the Measurement Selector (MA) block to extract the
measurements of pressure, temperature, moisture level, and trace gas level during
simulation.

In blocks that are modeled with an infinitely large moist air volume, the state of the
volume is assumed quasisteady and there is no need to specify an initial condition.
Instead, these blocks represent boundary conditions for the moist air network.

Saturation and Condensation

Blocks with finite moist air volume (listed in “Blocks with Moist Air Volume” on page 5-7)
can become saturated when the relative humidity ¢, reaches the relative humidity at
saturation ¢,. The saturated state represents the maximum amount of moisture that the
moist air volume can hold at that pressure and temperature. Any additional moisture
condenses into liquid water.

By definition, the relative humidity at saturation is 1. However, you can specify a different
value for ¢, to model some empirical effect or other phenomenon. When ¢, > 1, water
vapor partial pressure can become greater than the water vapor saturation pressure.
When ¢, < 1, moisture can condense before the water vapor partial pressure reaches the
water vapor saturation pressure.

Condensation does not occur instantaneously. Consequently, it is possible for ¢, to be
slightly greater than ¢,. The condensation time constant represents the characteristic
time it takes to condense out enough moisture to bring ¢,, back to ¢. A larger value of
the time constant causes ¢,, to exceed ¢, to a greater degree, but is more numerically
robust.

Moisture that condenses is considered to have left the moist air network, therefore, the
mass and energy of condensed liquid water is subtracted from the moist air volume. The
rate of condensation is reported by the physical signal output port W. If you want to
model the flow of the condensed liquid water, you can use the rate of condensation as an
input for another fluid network (hydraulic, thermal liquid, two-phase fluid, or another
moist air network). The following example shows how to use the thermal liquid network to
model the condensate that drains from a Constant Volume Chamber (MA) through a pipe.
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"ﬁa Constant Volume
v | Chamber (MA)

J . Moisture Source (MA)

Measurement Selector
(MA)

—7 A A
\ a A
M B
Controlled Reservoir e
(TL} Controlled Mass Flow H L'

Rate Source (TL)

=/ Pipe (TL}

If you have a Simscape Fluids license, you can also use the Tank (TL) block to model a
condensation collection tray. The liquid level in the tank represents the amount of
condensation collected but not yet drained from the tank.
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"5'5.5 Constant Volume
Chamber (MA)

Moisture Source (MA)

Measurement Selector
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Controlled Reservoir 8 T
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Rate Source (TL)

Tank {TL)

Local Restriction
(TL)

Choked Flow

Moist air flow through Local Restriction (MA), Variable Local Restriction (MA), or Pipe
(MA) blocks can become choked. Choking occurs when the flow velocity reaches the local
speed of sound. When the flow is choked, the velocity at the point of choking cannot
increase any further. However, the mass flow rate can still increase if the density of the
air mixture increases. This can be achieved, for example, by increasing the pressure
upstream of the point of choking. The effect of choking on a moist air network is that the
mass flow rate through the branch containing the choked block depends completely on
the upstream pressure and temperature. As long as the choking condition is maintained,
this choked mass flow rate is independent of any changes occurring in the pressure
downstream.
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The following model illustrates the choked flow. In this model, the Ramp block has a slope
of 0.005 and the start time of 10. The Simulink-PS Converter block has Input signal unit
set to Mpa. All other blocks have default parameter values. Simulation time is 50 s. When
you simulate the model, the pressure at port A of the Local Restriction (MA) block
increases linearly from atmospheric pressure, starting at 10 s. The pressure at port B is
fixed at atmospheric pressure.

| A A |
| @E A e B _ A
[ - |

Resersoir (MA)

Controlled Pressure Local Resfriction Reservair (MA)1
Source (MA) (W)
Simulink-PS
Comvarter ) =0
ry

| Sobver

Configuration
_/ Ramp

The following two plots show the logged simulation data for the Local Restriction (MA)
block. The Mach number at the restriction (Mach) reaches 1 at around 20 s, indicating
that the flow is choked. The mass flow rate (mdot_A) before the flow is choked follows
the typical quadratic behavior with respect to an increasing pressure difference.
However, the mass flow rate after the flow is choked becomes linear because the choked
mass flow rate depends only on the upstream pressure and temperature, and the
upstream pressure is increasing linearly.
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mdot_A
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The fact that the choked mass flow rate depends only on the upstream conditions can
cause an incompatibility with a Mass Flow Rate Source (MA) or a Controlled Mass Flow
Rate Source (MA) block connected downstream of the choked block. Consider this model,
which contains the Controlled Mass Flow Rate Source (MA) block instead of the
Controlled Pressure Source (MA) block.
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Converter
F flx} =0
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Gain Configuration

|
_/ Ramp

If the source commanded an increasing mass flow rate from left to right through the
Local Restriction (MA) block, the simulation would succeed even if the flow became
choked because the Controlled Mass Flow Rate Source (MA) block would be upstream of
the choked block. However, in this model, the Gain block reverses the flow direction, so
that the Controlled Mass Flow Rate Source (MA) block is downstream of the choked
block. The pressure upstream of the Local Restriction (MA) block is fixed at atmospheric
pressure. Therefore, the choked mass flow rate in this situation is constant. As the
commanded mass flow rate increases, eventually it will become greater than this constant
value of choked mass flow rate. At this point, the commanded mass flow rate and the
choked mass flow rate cannot be reconciled and the simulation fails. Viewing the logged
simulation data in the Simscape Results Explorer shows that simulation fails just at the
point when the Mach number reaches 1 and the flow becomes choked.
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In general, if a model is likely to choke, use pressure sources rather than mass flow rate
sources. If a model contains mass flow rate source blocks and the simulation fails, use the
Simscape Results Explorer to inspect the Mach number variables in all Local Restriction
(MA), Variable Local Restriction (MA), and Pipe (MA) blocks connected along the same
branch as the mass flow rate source. If the simulation failure occurs when the Mach
number reaches 1, it is likely that there is a downstream mass flow rate source trying to
command a mass flow rate greater than the possible choked mass flow rate.

See Also

More About

. “Modeling Moisture and Trace Gas Levels” on page 5-18
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Modeling Moisture and Trace Gas Levels

5-18

In this section...

“Moist Air Source Domain” on page 5-18
“Trace Gas Modeling Options” on page 5-19
“Using Moisture and Trace Gas Sources” on page 5-20

“Measuring Moisture and Trace Gas Levels” on page 5-21

Moist Air Source Domain

Unlike the moist air domain, the moist air source domain is a separate domain for
modeling moisture and trace gas levels in moist air systems.

Regular connection ports (boundary nodes) of the Moist Air library blocks belong to the
moist air domain. These ports are usually named A or B.

Blocks with a finite moist air volume also contain an internal node, which provides the
pressure, temperature, moisture level, and trace gas level inside the component. This
internal node connects to the moist air source domain. The corresponding port is named
S.

For example, these are the ports of a Pipe (MA) block.

u-‘l ﬁﬂd o
A
ul-. Fl=

* A and B — Moist air conserving ports associated with the boundary nodes. Use these
ports to connect this block to other blocks in a moist air circuit.

* S — Moist air source conserving port associated with the internal node. Use this port
to model moisture and trace gas levels, by connecting it to a block in the Moisture &
Trace Gas Sources library.

* H — Thermal conserving port associated with the temperature either of the air
mixture inside the block or of a block element, such as pipe wall.

* W and F — Physical signal output ports.
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Blocks in the Moisture & Trace Gas Sources library, which inject or extract moisture and
trace gas, also have a port S that belongs to the moist air source domain. This naming
convention helps to distinguish the two different domain types. For more information, see
“Using Moisture and Trace Gas Sources” on page 5-20.

Trace Gas Modeling Options

The Moist Air Properties (MA) block provides three ways to model the amount of trace
gas in the air mixture of the connected circuit:

* None — No trace gas is present. The moist air mixture consists only of dry air and
water vapor.

* Track mass fraction only — The trace gas level can be nonzero and vary during
simulation. However, the amount of trace gas is assumed to be small enough to have a
negligible impact on the fluid properties of the moist air mixture.

« Track mass fraction and gas properties — The trace gas level can be
nonzero and vary during simulation. The fluid properties of the moist air mixture
depend on the amount of trace gas in the mixture.

Trace Gas — None

If you set the Trace gas model parameter of a Moist Air Properties (MA) block to None,
the moist air mixture in the connected circuit consists only of dry air and water vapor.
Any nonzero values of trace gas level in parameters, variable targets, and inputs of the
blocks connected to the circuit are ignored. These include, for example, the amount of
trace gas in a reservoir, the initial amount of trace gas in a moist air volume, and all trace
gas sources. The block equations listed on the block reference pages are simplified by
replacing the trace gas mass or mole fraction terms in mixture properties calculations
with 0.

You do not have to enter any fluid properties associated with trace gas, and there is no
run-time trace gas properties table lookup. The underlying system equations are also
simplified for increased run-time efficiency.

Trace Gas — Track mass fraction only

If you select the Track mass fraction only option, this means that you want to keep
track of varying amounts of trace gas in the model, but consider its impact on the mixture
properties negligible. Use this option if you expect the amount of trace gas in the mixture
to be very small.
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You must specify the trace gas diffusivity in air (for the smoothed upwind scheme) and the
gas constant, but do not need to enter any other fluid properties associated with trace
gas, and there is no run-time trace gas properties table lookup. Therefore, this option is
also useful if you do not have property data for the trace gas.

Trace gas properties in block equations are replaced with the corresponding properties of
dry air. There are no other equation simplifications.

Trace Gas — Track mass fraction and gas properties

If you select the Track mass fraction and gas properties option, this means that
you want to keep track of varying amounts of trace gas, including its impact on the
mixture properties. This is the most general and complete option. You must provide the
properties of trace gas. All equations listed on the block reference pages assume this
option.

Using Moisture and Trace Gas Sources

Moisture and trace gas can be injected into blocks with finite moist air volume. (For a
complete list of these blocks, see “Blocks with Moist Air Volume” on page 5-7.) For
example, adding moisture to a Constant Volume Chamber (MA) block can represent
respiration of occupants in a room. Moisture and trace gas can also be extracted from
these blocks. For example, removing trace gas from a Pipe (MA) block can represent a
filter that extracts CO2 from moist air flow.

You can use the blocks in the Moisture & Trace Gas Sources library to inject or extract
moisture and trace gas. The moisture and trace gas sources can be connected only to the
conserving port S of the blocks with moist air volume, which is the port associated with
the moist air source domain. For more information, see “Moist Air Source Domain” on
page 5-18.

All Moist Air library blocks with a finite moist air volume have the Moisture and trace
gas source parameter, which controls the visibility of port S and provides options for
modeling moisture and trace gas levels inside the component:

* None — No moisture or trace gas is injected into or extracted from the block. Port S is
hidden. This is the default.

* Constant — Moisture and trace gas are injected into or extracted from the block at a
constant rate. The same parameters as in the Moisture Source (MA) and Trace Gas
Source (MA) blocks become available in the Moisture and Trace Gas section of the
block interface. Port S is hidden. This option provides an easy way to model a constant
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rate of change for moisture and trace gas levels directly inside the component, without
connecting additional blocks. It is equivalent to connecting an external constant
source.

* Controlled — Moisture and trace gas are injected into or extracted from the block at
a time-varying rate. Port S is exposed. Connect the Controlled Moisture Source (MA)
and Controlled Trace Gas Source (MA) blocks to this port. You can also use this option
to connect multiple moisture and trace gas sources to the same block with moist air
volume, to represent different effects. For example, a Constant Volume Chamber (MA)
block can have all of these sources connected to its port S:

* A Moisture Source (MA) block, representing respiration of water vapor
* A second Moisture Source (MA) block, representing a spray of liquid water
* A Trace Gas Source (MA) block, representing respiration of CO2

If no moisture or trace gas is injected to or extracted from a block with moist air volume,
set its Moisture and trace gas source parameter to None to hide the unused port S.

Note Using moisture source blocks to remove moisture is a different effect than
condensation. Condensation occurs independently whenever ¢,, = ¢,,. For more
information, see “Saturation and Condensation” on page 5-10.

Measuring Moisture and Trace Gas Levels

The Sensors sublibrary of the Moist Air library contains the regular sensor blocks, similar
to the ones found in other domains. The Humidity & Trace Gas Sensor (MA) block lets you
measure the moisture level and trace gas level in a moist air network, upstream of the
measured node. These blocks can be connected only to boundary nodes (regular moist air
conserving ports). Therefore, they cannot measure moist air properties at internal nodes
representing a moist air volume.

To measure the amount of moisture and trace gas in a moist air volume, along with the
pressure and temperature, each block with a finite internal moist air volume has a
physical signal port F, which outputs a vector physical signal in base SI units:

% Moist air volume measurements
F == [value(p I, 'Pa'); value(T I, 'K'); RHI; xwI; ywI; HI; xglI;vygll;

where:

5-21



5 Moist Air System Models

5-22

p I is the pressure of the moist air volume, in Pa

T Iis the temperature of the moist air volume, in K

RH I is the relative humidity of the moist air volume

x_w_I is the specific humidity of moist air volume

y w I is the water vapor mole fraction of the moist air volume
HR I is the humidity ratio of the moist air volume

x_g_I is the trace gas mass fraction of the moist air volume

y g Iis the trace gas mole fraction of the moist air volume

Use the Measurement Selector (MA) block to unpack the vector signal and reassign units
to pressure and temperature values. Connect the Measurement Selector (MA) block to
the physical signal output port F of a block with finite internal moist air volume to access
the data.

See Also

More About

“Modeling Moist Air Systems” on page 5-2
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* “How Simscape Models Represent Physical Systems” on page 6-2

* “How Simscape Simulation Works” on page 6-7

* “Setting Up Solvers for Physical Models” on page 6-13

* “Important Concepts and Choices in Physical Simulation” on page 6-18
* “Making Optimal Solver Choices for Physical Simulation” on page 6-22
* “Filtering Input Signals and Providing Time Derivatives” on page 6-27
* “System Scaling by Nominal Values” on page 6-30

* “Frequency and Time Simulation Mode” on page 6-37

* “Troubleshooting Simulation Errors” on page 6-46

* “Limitations” on page 6-53
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How Simscape Models Represent Physical Systems

6-2

In this section...

“Representations of Physical Systems” on page 6-2

“Differential, Differential-Algebraic, and Algebraic Systems” on page 6-2
“Stiffness” on page 6-3

“Events and Zero Crossings” on page 6-3

“Working with Simscape Representation” on page 6-3

“Managing Zero Crossings in Simscape Models” on page 6-4
“References” on page 6-5

Representations of Physical Systems

This section describes important characteristics of the mathematical representations of
physical systems, and how Simscape software implements such representations. You
might find this overview helpful if you:

* Require details of such representations to improve your model fidelity or simulation
performance.

* Are constructing your own, custom Simscape components using the Simscape
language.

* Need to troubleshoot Simscape modeling or simulation failures.

Mathematical representations are the foundation for physical simulation. For more
information about simulation, see “How Simscape Simulation Works” on page 6-7.

Differential, Differential-Algebraic, and Algebraic Systems

The mathematical representation of a physical system contains ordinary differential
equations (ODEs), algebraic equations, or both.

* ODEs govern the rates of change of system variables and contain some or all of the
time derivatives of the system variables.

» Algebraic equations specify functional constraints among system variables, but
contain no time derivatives of system variables.
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* Without algebraic constraints, the system is differential (ODEs).
* Without ODEs, the system is algebraic.

* With ODEs and algebraic constraints, the system is mixed differential-algebraic
(DAEs).

A system variable is differential or algebraic, depending on whether or not its time
derivative appears in the system equations.

Stiffness

A mathematical problem is stiff if the solution you are seeking varies slowly, but there are
other solutions within the error tolerances that vary rapidly. A stiff system has several
intrinsic time scales of very different magnitude [1].

A stiff physical system has one or more components that behave “stiffly” in the ordinary
sense, such as a spring with a large spring constant. Mathematical equivalents include
quasi-incompressible fluids and low electrical inductance. Such systems often exhibit high
frequency oscillations in some of their components or modes.

Events and Zero Crossings

Events are discontinuous changes in system state or dynamics as the system evolves in
time; for example, a valve opening, or a hard stop. For more information on how events
are represented in the Simscape language, see “Discrete Event Modeling”.

A zero crossing is a specific event type, represented by the value of a mathematical
function changing sign. Variable-step solvers take smaller steps when they detect a zero-
crossing event. Smaller steps help to capture the dynamics that cause the zero crossing,
but they also significantly slow down the simulation. Various methods of zero crossing
detection and analysis help you strike the right balance between the simulation speed and
accuracy. For more information, see “Managing Zero Crossings in Simscape Models” on
page 6-4.

Working with Simscape Representation

A Simscape model is equivalent to a set of equations representing one or more physical
systems as physical networks.

6-3
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» Start by assuming that your physical network is a DAE system: a mix of differential
and algebraic equations and variables on page 6-2.

Remember that some physical networks are represented by ODEs only.
* Physical networks may contain stiff differential equations on page 6-3.

* Identify discrete and continuous components that might change discontinuously on
page 6-3 during a simulation.

Managing Zero Crossings in Simscape Models

Your model can contain zero-crossing conditions arising from several sources:

» Simscape and Simulink blocks copied from their respective block libraries

* Custom blocks programmed in the Simscape language

Simulink software has global methods for managing zero-crossing events. For more
information, see “Zero-Crossing Detection” (Simulink).

You can disable zero-crossing detection on individual blocks, or globally across the entire
model. Zero-crossing detection often improves simulation accuracy, but can slow
simulation speed.

Tip If the exact times of zero crossings are important in your model, then keep zero-
crossing detection enabled. Disabling it can lead to major simulation inaccuracies.

Detecting and Minimizing Zero Crossings in Simscape Models

In addition to generic Simulink methods, Simscape software has specific tools that let you
detect and manage zero-crossings in your models:

» Prior to simulation, you can use the Statistics Viewer to identify the potential zero-
crossing signals in the model. These signals are typically generated from operators
and functions that contain discontinuities, such as comparison operators, abs, sqrt
functions, and so on. During simulation it is possible for none of these signals to
produce a zero-crossing event or for one or more of these signals to have multiple
zero-crossing events. For more information, see “View Model Statistics” on page 13-
14.
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*  When logging simulation data for a model, you can select the Log simulation
statistics option. The data log then includes the actual zero-crossing data during
simulation. For more information, see “Log Simulation Statistics” on page 12-15.

You can access and analyze zero-crossing data logged during simulation by using the
Simscape Results Explorer. For more information, see “About the Simscape Results
Explorer” on page 12-30.

* The sscprintzcs function prints information about zero crossings detected during
simulation, based on logged simulation data. Before you call this function, you must
have the simulation log variable, which includes simulation statistics data, in your
current workspace. For more information and examples, see sscprintzcs.

Managing zero crossing is especially important when you prepare your models for real-
time simulation. See “Reduce Zero Crossings” on page 10-73 for a detailed example of
this workflow.

Enabling and Disabling Zero-Crossing Conditions in Simscape Language

When writing code for your own custom blocks using the Simscape language, you can
create or avoid zero-crossing conditions in your model by switching between different
implementations of discontinuous conditional expressions. You can:

» Use relational operators, which create zero-crossing conditions. For example,
programming the operator relation: a < b creates a zero-crossing condition.

» Use relational functions, which do not create zero-crossing conditions. For example,
programming the functional relation: 1t (a,b) does not create a zero-crossing
condition. For more information on whether a particular function creates
discontinuities when used in Simscape language, see equations.

Note Using relational functions, like 1t (a,b), in event predicates always creates a zero-
crossing condition. For more information about event predicates, see “Discrete Event
Modeling”.
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How Simscape Simulation Works

In this section...

“Simscape Simulation Phases” on page 6-7
“Model Validation” on page 6-9

“Network Construction” on page 6-9
“Equation Construction” on page 6-10

“Initial Conditions Computation” on page 6-10
“Transient Initialization” on page 6-11
“Transient Solve” on page 6-12

Simscape Simulation Phases

You might find this brief overview helpful for constructing models and understanding
errors. For more information, see “How Simscape Models Represent Physical Systems” on

page 6-2.

Simscape software gives you multiple ways to simulate and analyze physical systems in
the Simulink environment. Running a physical model simulation is similar to simulating
any Simulink model. It entails setting various simulation options, starting the simulation,
and viewing the simulation results. This topic describes various aspects of simulation
specific to Simscape models. For specifics of simulating and analyzing with individual
Simscape add-on products, refer to the documentation for those individual add-on

products.

This flow chart presents the Simscape simulation sequence.
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“Model Validation” on page 6-9
“Network Construction” on page 6-9
“Equation Construction” on page 6-10

“Initial Conditions Computation” on page 6-10
“Transient Initialization” on page 6-11
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“Transient Solve” on page 6-12

Model Validation

The Simscape solver first validates the model configuration and checks your data entries
from the block dialog boxes.

All Simscape blocks in a diagram must be connected into one or more physical
networks.

Each topologically distinct physical network in a diagram requires exactly one Solver
Configuration block.

If your model contains fluid elements (such as two-phase fluids, gas, moist air,
isothermal or thermal liquid), each topologically distinct circuit in a diagram can
contain a block that defines the fluid properties for all the blocks that connect to the
circuit. If no fluid block is attached to a loop, the blocks in this loop use the default
fluid. However, more than one fluid block in a loop generates an error.

Signal units specified in a Simulink-PS Converter block must match the input type
expected by the Simscape block connected to it. For example, when you provide the
input signal for an Ideal Angular Velocity Source block, specify angular velocity units,
such as rad/s or rpm, in the Simulink-PS Converter block, or leave it unitless.
Similarly, units specified in a PS-Simulink Converter block must match the type of
physical signal provided by the Simscape block outport.

Network Construction

After validating the model, the Simscape solver constructs the physical network based on
the following principles:

Two directly connected Conserving ports have the same values for all their Across
variables (such as voltage or angular velocity).

Any Through variable (such as current or torque) transferred along the Physical
connection line is divided among the multiple components connected by the branches.
For each Through variable, the sum of all its values flowing into a branch point equals
the sum of all its values flowing out.

6-9
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Equation Construction

Based on the network configuration, the parameter values in the block dialog boxes, and
the global parameters defined by the fluid properties, if applicable, the Simscape solver
constructs the system of equations for the model.

These equations contain system variables of the following types:

* Dynamic — Time derivatives of these variables appear in equations. Dynamic, or
differential, variables add dynamics to the system and require the solver to use
numerical integration to compute their values. Dynamic variables can produce either
independent or dependent states for simulation.

* Algebraic — Time derivatives of these variables do not appear in equations. These
variables appear in algebraic equations but add no dynamics, and this typically occurs
in physical systems due to conservation laws, such as conservation of mass and
energy. The states of algebraic variables are always dependent on dynamic variables,
other algebraic variables, or inputs.

The solver then performs the analysis and eliminates variables that are not needed to
solve the system of equations. After variable elimination, the remaining variables
(algebraic, dynamic dependent, and dynamic independent) get mapped to Simulink state
vector of the model.

For information on how to view and analyze model variables, see “Model Statistics”.

Initial Conditions Computation

The Simscape solver computes the initial conditions only once, at the beginning of
simulation (t = 0). In the Solver Configuration block dialog box, the default is that the
Start simulation from steady state check box is not selected. If it is selected in your
model, see “Finding an Initial Steady State” on page 6-11.

The solver computes the initial conditions by finding initial values for all the system
variables that exactly satisfy all the model equations. You can affect the initial conditions
computation by block-level variable initialization, that is, by specifying the priority and
target initial values on the Variables tab of the block dialog boxes. You can also initialize
variables for a whole model from a saved operating point.

The values you specify during variable initialization are not the actual values of the
respective variables, but rather their target values at the beginning of simulation (t = 0).
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Depending on the results of the solve, some of these targets may or may not be satisfied.
The solver tries to satisfy the high-priority targets first, then the low-priority ones:

* At first, the solver tries to find a solution where all the high-priority variable targets
are met exactly, and the low-priority targets are approximated as closely as possible. If
the solution is found during this stage, it satisfies all the high-priority targets. Some of
the low-priority targets might also be met exactly, the others are approximated.

» If the solver cannot find a solution that exactly satisfies all the high-priority targets, it
issues a warning and enters the second stage, where High priority is relaxed to Low.
That is, the solver tries to find a solution by approximating both the high-priority and
the low-priority targets as closely as possible.

After you initialize the variables and prior to simulating the model, you can open the
Variable Viewer to see which of the variable targets have been satisfied. For more
information on block-level variable initialization, see “Variable Initialization”.

Finding an Initial Steady State

When you select the Start simulation from steady state check box, the solver attempts
to find the steady state that would result if the inputs to the system were held constant
for a long enough time, starting from the initial state obtained from the initial conditions
computation just described. If the steady-state solve succeeds, the state found is some
steady state (within tolerance), but not necessarily the state expected from the given
initial conditions. Steady state means that the system variables are no longer changing
with time. Simulation then starts from this steady state.

A model can have more than one steady state. In this case, the solver selects the steady-
state solution that is consistent with the variable targets specified during block-level
variable initialization. For more information, see “Variable Initialization”.

Transient Initialization

After computing the initial conditions, or after a subsequent event (such as a discontinuity
resulting, for example, from a valve opening, or from a hard stop), the Simscape solver
performs transient initialization. Transient initialization fixes all dynamic variables and
solves for algebraic variables and derivatives of dynamic variables. The goal of transient
initialization is to provide a consistent set of initial conditions for the next phase,
transient solve.
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Transient Solve

Finally, the Simscape solver performs transient solve of the system of equations. In
transient solve, continuous differential equations are integrated in time to compute all the
variables as a function of time.

The solver continues to perform the simulation according to the results of the transient
solve until the solver encounters an event, such as a zero crossing or discontinuity. The
event may be within the physical network or elsewhere in the Simulink model. If the
solver encounters an event, the solver returns to the phase of transient initialization, and
then back to transient solve. This cycle continues until the end of simulation.
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Setting Up Solvers for Physical Models

In this section...

“About Simulink and Simscape Solvers” on page 6-13
“Choosing Simulink and Simscape Solvers” on page 6-13

“Harmonizing Simulink and Simscape Solvers” on page 6-15

About Simulink and Simscape Solvers

This section explains how to select solvers for physical simulation. Proper simulation of
Simscape models requires certain changes to Simulink defaults and consideration of
physical simulation trade-offs. For recommended choices, see “Making Optimal Solver
Choices for Physical Simulation” on page 6-22.

Choosing Simulink and Simscape Solvers

Simulink and Simscape solver technologies provide a range of tools to simulate physical
systems, including the powerful Simscape technique of local solvers. You choose global,
or model-wide, solvers through Simulink. After making these choices, check that they are
consistent; see “Harmonizing Simulink and Simscape Solvers” on page 6-15.

* “Working with Global Simulink Solvers” on page 6-13
* “Working with Local Simscape Solvers” on page 6-14

Working with Global Simulink Solvers

In the Configuration Parameters dialog box of your model, on the Solver pane, the solver
and related settings that you select are global choices. For more information, see “Solver
Selection Criteria” (Simulink).

When you first create a model, the default Simulink solver is VariableStepAuto. For
more information, see “Select Solver Using Auto Solver” (Simulink). To select a different
solver, follow a procedure similar to the procedure in “Modifying Initial Settings” on page
1-27.

* You can choose one from a suite of both variable-step and fixed-step solvers.

* You can also select from among explicit and implicit solvers. For physical models,
MathWorks recommends implicit solvers, such as ode14x, ode23t, and ode15s. Implicit
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solvers require fewer time steps than explicit solvers, such as ode45, ode113, and
odel.

See “Switching from the Default Explicit Solver to Other Simulink Solvers” on page 6-
15.

« If all the Simulink and Simscape states in your model are discrete, Simulink
automatically switches to a discrete solver and issues a warning. Otherwise, a
continuous solver is the default.

* By default, Simulink variable-step solvers attempt to locate events in time by zero-
crossing detection. See “Managing Zero Crossings in Simscape Models” on page 6-4.

Working with Local Simscape Solvers

You can switch one or more physical networks to a local implicit, fixed-step Simscape
solver by selecting Use local solver in the network Solver Configuration block. The
solver and related settings you make in each Solver Configuration block are specific to
the connected physical network and can differ from network to network.

A physical network using a local solver appears to the global Simulink solver as if it has
discrete states. You can still use any continuous global solver.

Choosing Local Solvers and Sample Times

To use a local solver, choose a solver type (Backward Euler, Trapezoidal Rule, or
Partitioning) and a sample time. Backward Euler is the default.

Choosing Fixed-Cost Simulation

You can select a fixed-cost simulation for one or more physical networks by selecting Use
fixed-cost runtime consistency iterations, as well as Use local solver, and fixing the
number of nonlinear and mode iterations. Fixed-cost simulation requires a global fixed-
step solver.

Choosing Multirate Simulation
With the local solver option, you can perform multirate simulations, with:

+ Different sample times in different physical networks, through their respective Solver
Configuration blocks

* A sample-based Simulink block in the model with a sample time different from the
Solver Configuration block or blocks
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Harmonizing Simulink and Simscape Solvers

Your Simulink and Simscape solver choices must work together consistently. To ensure
consistency of your Simulink and Simscape solver choices for a particular model, open the
model Configuration Parameters dialog box. In the model window, open the Modeling tab
and click Model Settings. Review and adjust the following settings.

* “Switching from the Default Explicit Solver to Other Simulink Solvers” on page 6-15
* “Enabling or Disabling Simulink Zero-Crossing Detection” on page 6-16
* “Making Multirate Simulation Consistent” on page 6-17

@ Configuration Parameters: mech_simple/Cenfiguration (Active)

- m} X
Solver Editing
Data Import/Export §
Math and Data Types Editing Mode: |Full A
» Diagnostics
Physical Networks Model-Wide Simulation Diagnostics
Hardware Implementation =
Model Referencing Explicit solver used in model containing Physical Networks blocks: |warning -
Simulation Target
9 Zero-crossing control is globally disabled in Simulink warning A
» Code Generation
» Cov
Coverage System Scaling
» HDL Code Generation
Simscape +'| Normalize using nominal values Specify nominal values..
Simscape Multibody 1G
» Simscape Multibody Data Logging
Log simulation data: Al A
Log simulation statistics
Record data in Simulation Data Inspector
Open viewer after simulation
Workspace variable name: |simlog
Decimation; 1
+| Limit data points
Data history (last N steps): | 10000
Operating Point
Enable operating point initialization
Model operating point
OK Cancel Help Apply

Simscape Pane of the Configuration Parameters Dialog Box
Switching from the Default Explicit Solver to Other Simulink Solvers

When you first create a model, the default Simulink solver is VariableStepAuto. Auto
solver chooses a suitable solver as described in “Select Solver Using Auto Solver”
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(Simulink), and for some types of models it can choose an explicit solver, ode45. If you do
not modify the default (explicit) solver, your performance may not be optimal. Implicit
solvers are better for most physical simulations. For more information about implicit
solvers and physical systems, see “Important Concepts and Choices in Physical
Simulation” on page 6-18.

Diagnostic Messages About Explicit Solvers

When you use an explicit solver in a model containing Simscape blocks, the system issues
a warning to alert you to a potential problem.

To turn off this default warning or to change it to an error message, go to the Simscape
pane of the Configuration Parameters dialog box:

1 From the Explicit solver used in model containing Physical Networks blocks
drop-down list, select the option that you want:

* warning — If the model uses an explicit solver, the system issues a warning upon
simulation. This is the default option that alerts you to a potential problem if you
use the default solver.

* error — If the model uses an explicit solver, the system issues an error message
upon simulation. If your model is stiff, and you do not want to use explicit solvers,
select this option to avoid future errors.

* none — If the model uses an explicit solver, the system issues no warning or error
message upon simulation. If you want to work with explicit solvers, in particular
for models that are not stiff, select this option.

2 (Click OK.
Enabling or Disabling Simulink Zero-Crossing Detection

By default, Simulink tracks an important class of simulation events by detecting zero
crossings. With a global variable-step solver and without a local solver, Simulink attempts
to locate the simulated times of zero crossings, if present. See “Managing Zero Crossings
in Simscape Models” on page 6-4.

Diagnostic Messages About Globally Disabling Zero-Crossing Detection

You can globally disable zero-crossing detection in the Solver pane of the Configuration
Parameters dialog box, under Zero-crossing options. If you do, and if you are using a
global variable-step solver without a local solver, the system issues a warning or error
when you simulate with Simscape blocks.
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You can choose between warning and error messages in the Simscape pane of the
Configuration Parameters dialog box.

1 From the Zero-crossing control is globally disabled in Simulink drop-down list,
select the option that you want, if you globally disable zero-crossing detection:

* warning — The system issues a warning message upon simulation. This option is
the default.

* error — The system issues an error message upon simulation, which stops.
2 Click OK.

Making Multirate Simulation Consistent

The sample time or step size of the global Simulink solver must be the smallest time step
of all the solvers in a multirate Simscape simulation.

To avoid simulation errors in sample time propagation, go to the Solver pane in the

Configuration Parameters dialog box and select the Automatically handle rate
transition for data transfer check box.
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In this section...

“Variable-Step and Fixed-Step Solvers” on page 6-18

“Explicit and Implicit Solvers” on page 6-19

“Full and Sparse Linear Algebra” on page 6-19

“Event Detection and Location” on page 6-19

“Unbounded, Bounded, and Fixed-Cost Simulation” on page 6-20

“Global and Local Solvers” on page 6-20

This section describes advanced concepts and trade-offs you might want to consider as
you configure and test solvers and other simulation settings for your Simscape model. For
a summary of recommended settings, see “Making Optimal Solver Choices for Physical
Simulation” on page 6-22. For background information, consult “How Simscape Models
Represent Physical Systems” on page 6-2 and “How Simscape Simulation Works” on page
6-7.

Variable-Step and Fixed-Step Solvers

Variable-step solvers are the usual choice for design, prototyping, and exploratory
simulation, and to precisely locate events during simulation. They are not useful for real-
time simulation and can be costly if there are many events.

A variable-step solver automatically adjusts its step size as it moves forward in time to
adapt to how well it controls solution error. You control the accuracy and speed of the
variable-step solution by adjusting the solver tolerance. With many variable-step solvers,
you can also limit the minimum and maximum time step size.

Fixed-step solvers are recommended or required if you want to make performance
comparisons across platforms and operating systems, to generate a code version of your
model, and to bound or fix simulation cost. A typical application is real-time simulation.
For more information, see “Real-Time Simulation”.

With a fixed-step solver, you specify the time step size to control the accuracy and speed
of your simulation. Fixed-step solvers do not adapt to improve accuracy or to locate
events. These limitations can lead to significant simulation inaccuracies.
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Explicit and Implicit Solvers

The degree of stiffness and the presence of algebraic constraints in your model influence
the choice between an explicit or implicit solver. Explicit and implicit solvers use different
numerical methods to simulate a system.

If the system is a nonstiff ODE system, choose an explicit solver. Explicit solvers
require less computational effort than implicit solvers, if other simulation
characteristics are fixed.

To find a solution for each time step, an explicit solver uses a formula based on the
local gradient of the ODE system.

If the system is stiff, use an implicit solver. Though an explicit solver may require less
computational effort, for stiff problems an implicit solver is more accurate and often
essential to obtain a solution. Implicit solvers require per-step iterations within the
simulated time steps. With some implicit solvers, you can limit or fix these iterations.

An implicit solver starts with the solution at the current step and iteratively solves for
the solution at the next time step with an algebraic solver. An implicit algorithm does
more work per simulation step, but can take fewer, larger steps.

If the system contains DAEs, even if it is not stiff, use an implicit solver. Such solvers
are designed to simultaneously solve algebraic constraints and integrate differential
equations.

Full and Sparse Linear Algebra

When you simulate a system with more than one state, the solver manipulates the
mathematical system with matrices. For a large number of states, sparse linear algebra
methods applied to large matrices can make the simulation more efficient.

Event Detection and Location

Events, in most cases, occur between simulated time steps.

Fixed-step solvers detect events after “stepping over” them, but cannot adaptively
locate events in time. This can lead to large inaccuracies or failure to converge on a
solution.

Variable-step solvers can both detect events and estimate the instants when they occur
by adapting the timing and length of the time steps.
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Tip To estimate the timing of events or rapid changes in your simulation, use a variable-
step solver.

If your simulation has to frequently adapt to events or rapid changes by changing its step
size, much or all of the advantage of implicit solvers over explicit solvers is lost.

Unbounded, Bounded, and Fixed-Cost Simulation

In certain cases, such as real-time simulation, you need to simulate with an execution
time that is not only bounded, but practically fixed to a predictable value. Fixing
execution time can also improve performance when simulating frequent events.

The real-time cost of a variable-step simulation is potentially unlimited. The solver can
take an indefinite amount of real time to solve a system over a finite simulated time,
because the number and size of the time steps are adapted to the system. You can
configure a fixed-step solver to take a bounded amount of real time to complete a
simulation, although the exact amount of real time might still be difficult to predict before
simulation. Even a fixed-step solver can take multiple iterations to find a solution at each
time step. Such iterations are variable and not generally limited in number; the solver
iterates as much as it needs to.

Fixing execution time implies fixed-cost simulation, which both fixes the time step and
limits the number of per-step iterations. Fixed-cost simulation prevents execution
overruns, when the execution time is longer than the simulation sample time. A bounded
execution time without a known fixed cost might still cause some steps to overrun the
sample time.

The actual amount of computational effort required by a solver is based on a number of
other factors as well, including model complexity and computer processor. For more
information, see “Real-Time Simulation”.

Global and Local Solvers

You can use different solvers on different parts of the system. For example, you might
want to use implicit solvers on stiff parts of a system and explicit solvers everywhere else.
Such local solvers make the simulation more efficient and reduce computational cost.
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Such multisolver simulations must coordinate the separate sequences of time steps of
each solver and each subsystem so that the various solvers can pass simulation updates to
one another on some or all of the shared time steps.
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In this section...

“Simulating with Variable Time Step” on page 6-22

“Simulating with Fixed Time Step — Local and Global Fixed-Step Solvers” on page 6-22
“Simulating with Fixed Cost” on page 6-24

“Troubleshooting and Improving Solver Performance” on page 6-24

“Multiple Local Solvers Example with a Mixed Stiff-Nonstiff System” on page 6-25

For the key simulation concepts to consider before making these choices, see “Important
Concepts and Choices in Physical Simulation” on page 6-18.

Simulating with Variable Time Step

For a typical Simscape model, MathWorks recommends the Simulink variable-step solvers
odel5s and ode23t. Of these two global solvers:

* The odelb5s solver is more stable, but tends to damp out oscillations.

* The ode23t solver captures oscillations better but is less stable.

With Simscape models, these solvers solve the differential and algebraic parts of the
physical model simultaneously, making the simulation more accurate and efficient.

Simulating with Fixed Time Step — Local and Global Fixed-
Step Solvers

In a Simscape model, MathWorks recommends that you implement fixed-step solvers by
continuing to use a global variable-step solver and switching the physical networks within
your model to local fixed-step solvers through each network Solver Configuration block.
The local solver choices are:

* The Backward Euler tends to damp out oscillations, but is more stable, especially if
you increase the time step.
* The Trapezoidal Rule solver captures oscillations better but is less stable.

» The Partitioning solver lets you increase real-time simulation speed by partitioning the
entire system of equations corresponding to a Simscape network into a cascade of
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smaller equation systems. Not all networks can be partitioned. However, when a
system can be partitioned, this solver provides a significant increase in real-time
simulation speed. For more information, see “Increase Simulation Speed Using the
Partitioning Solver” on page 10-27.

Regardless of which local solver you choose, the Backward Euler method is always
applied:

* Right at the start of simulation.

* Right after an instantaneous change, when the corresponding block undergoes an
internal discrete change. Such changes include clutches locking and unlocking, valve
actuators opening and closing, and the switching of the Asynchronous Sample & Hold
block.

Switching to Discrete States and Solvers

+ If you switch a physical network to a local solver, the global solver treats that network
as having discrete states.

» If other physical networks in your model are not using local solvers, or if the non-
Simscape parts of your model have continuous states, then you must use a continuous
global solver.

+ If all physical networks in your model use local solvers, and any non-Simscape parts of
your model have only discrete states, then the global solver effectively sees only
discrete states. In that case, MathWorks recommends a discrete, fixed-step global
solver. If you are attempting a fixed-cost simulation with discrete states, you must use
a discrete, fixed-step global solver.

Note Input filtering may introduce continuous states. If you are using a combination of
discrete and local solvers and get an error message about the model containing
continuous states, check the Simulink-PS Converter blocks in the model and turn off input
filtering, if needed. For more information, see “Filtering Input Signals and Providing Time
Derivatives” on page 6-27.

For Maximum Accuracy with Fixed-Step Simulation
If solution accuracy is your single overriding requirement, use the global Simulink fixed-

step solver ode14x, without local solvers. This implicit solver is the best global fixed-step
choice for physical systems. While it is more accurate than the Simscape local solvers for
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most models, ode14x can be computationally more intensive and slower when you use it
by itself than it is when you use it in combination with local solvers.

In this solver, you must limit the number of global implicit iterations per time step.
Control these iterations with the Number Newton'’s iterations parameter in the Solver
pane of the Configuration Parameters dialog box.

Simulating with Fixed Cost

Many Simscape models need to iterate multiple times within one time step to find a
solution. If you want to fix the cost of simulation per time step, you must limit the number
of these iterations, regardless of whether you are using a local solver, or a global solver
like ode14x. For more information, see “Unbounded, Bounded, and Fixed-Cost
Simulation” on page 6-20 and “Fixed-Cost Simulation for Real-Time Viability” on page 10-
95.

To limit the iterations, open the Solver Configuration block of each physical network.
Select Use fixed-cost runtime consistency iterations and set limits for the number of
nonlinear and mode iterations per time step.

Tip Fixed-cost simulation with variable-step solvers is not possible in most simulations.
Attempt fixed-cost simulation with a fixed-step solver only and avoid using fixed-cost
iterations with variable-step solvers.

Troubleshooting and Improving Solver Performance

Consider the basic trade-off of speed versus accuracy and stability. A larger time step or
tolerance results in faster simulation, but also less accurate and less stable simulation. If
a system undergoes sudden or rapid changes, larger tolerance or step size can cause
major errors. Consider tightening the tolerance or step size if your simulation:

* Is not accurate enough or looks unphysical.

» Exhibits discontinuities in state values.

* Reaches the minimum step size allowed without converging, usually a sign that one or
more events or rapid changes occur within a time step.

Any one or all of these steps increase accuracy, but make the simulation run more slowly.
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For Local Solvers

Models with friction or hard stops are particularly difficult for local solvers, and may not
work or may require a very small time step.

With the Trapezoidal Rule solver, oscillatory “ringing” can become more of a problem as
the time step is increased. For a larger time step in a local solver, consider switching to
Backward Euler.

For ODE Systems

In certain cases, your model reduces to an ODE system, with no dependent algebraic
variables. (See “How Simscape Models Represent Physical Systems” on page 6-2.) If so,
you can use any global Simulink solver, with no special physical modeling considerations.
An explicit solver is often the best choice in such situations.

* Through careful analysis, you can sometimes determine if your model is represented
by an ODE system.

* Ifyou create a Simscape model from a mathematical representation using the
Simscape language, you can determine directly if the resulting system is ODE.

For Large Systems

Depending on the number of system states, you can simulate more efficiently if you switch
the value of the Linear Algebra setting in the Solver Configuration block.

For smaller systems, Full provides faster results. For larger systems, Sparse is typically
faster.

Multiple Local Solvers Example with a Mixed Stiff-Nonstiff
System

In this example, a Simscape model contains three physical networks.

» Two networks (numbers 1 and 3) use local solvers, making these two networks appear
to the global solver as if they had discrete states. Internally, these networks still have
continuous states. These networks are moderately and highly stiff, respectively.

One of these networks (number 1) uses the Backward Euler (BE) local solver. The
other (number 3) uses the Trapezoidal Rule (TR) local solver.
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* The remaining network (number 2) uses the global Simulink solver. Its states appear
to the model as continuous. This network is not stiff and is pure ODE. Use an explicit
global solver.

* Because at least one network appears to the model as continuous, you must use a
continuous solver. However, if you remove network 2, and if the model contains no
continuous Simulink states, Simulink automatically switches to a discrete global
solver.

|1| Model-wide Simulink solver

Simulink
blocks

States appear States appear States appear

as discrete as continuous as discrete
Y N
Physical Physical
Network 1 Network 2
(Monstiff
Local !
solver pure ODE)
(BE) Global
solver
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Filtering Input Signals and Providing Time Derivatives

You may need to provide time derivatives of some of the input signals, especially if you
use an explicit solver. One way of providing the necessary input derivatives is by filtering
the input through a low-pass filter. Input filtering makes the input signal smoother and
generally improves model performance. The additional benefit is that the Simscape
engine computes the time derivatives of the filtered input. The first-order filter provides
one derivative, while the second-order filter provides the first and second derivatives. If
you use input filtering, it is very important to select the appropriate value for the filter
time constant.

The filter time constant controls the filtering of the input signal. The filtered input follows
the true input but is smoothed, with a lag on the order of the time constant that you
choose. Set the time constant to a value no larger than the smallest time interval in the
system that interests you. If you choose a very small time constant, the filtered input
signal is closer to the true input signal. However, this filtered input signal increases the
stiffness of the system and slows the simulation.

Instead of using input filtering, you can provide time derivatives for the input signal
directly, as additional physical signals.

For piecewise-constant signals, you can also explicitly set the input derivatives to zero.

You can control the way you provide time derivatives for each input signal by configuring
the Simulink-PS Converter block connected to that input signal:

1 Open the Simulink-PS Converter block dialog box.
2 Click the Input Handling tab.
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Block Parameters: Simulink-P5 Converter @
Simulink-PS Converter

Converts the unitless Simulink input signal to a Physical Signal.

The unit expression in "Input signal unit' parameter is associated with
the unitless Simulink input signal and determines the unit assigned to
the Physical Signal.

‘Apply affine conversion' check box is only relevant for units with
offset (such as temperature units).

If the selected solver requires input derivatives, you can either provide
them explicitly through additional signal ports, or turn on input
filtering to calculate time derivatives. The first-order filter provides cne
derivative, while the second-order filter provides the first and second
derivatives. For piecewise-constant signals, you can also explicitly set
the input derivatives to zero.

Parameters

Input Handling

;:f\tgﬁ::d [Provide signals v]

Provided signals: [Input anly - ]
[ OK ] [ Cancel ] [ Help ] Apply

When you add a new Simulink-PS Converter block to your model, the default input
handling options are Provide signals and Input only, and the block has one
Simulink input port and one physical signal output port.

To turn on input filtering, set the Filtering and derivatives parameter to Filter
input, derivatives calculated. Select the first-order or second-order filter, by
using the Input filtering order parameter, and set the appropriate Input filtering
time constant (in seconds) parameter value for your model.

To avoid filtering the input signal, keep the Filtering and derivatives parameter as
Provide signals. Then set the Provided signals parameter value:

* Input and first derivative — If you select this option, an additional
Simulink input port appears on the Simulink-PS Converter block, to let you
connect the signal providing input derivative.

* Input and first two derivatives — If you select this option, two
additional Simulink input ports appear on the Simulink-PS Converter block, to let
you connect the signals providing input derivatives.
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6 Finally, if your input signal is piecewise constant (such as step), you can also
explicitly set the input derivatives to zero by selecting the Zero derivatives
(piecewise constant) value for the Filtering and derivatives parameter.

6-29



6 Model Simulation

System Scaling by Nominal Values

6-30

In this section...

“Enable or Disable System Scaling by Nominal Values” on page 6-30
“Possible Sources of Nominal Values and Their Evaluation Order” on page 6-31
“Specify Nominal Value-Unit Pairs for a Model” on page 6-31

“Modify Nominal Values for a Block Variable” on page 6-34

Nominal values provide a way to specify the expected magnitude of a variable in a model,
similar to specifying a transformer rating, or setting a range on a voltmeter. Using system
scaling based on nominal values increases the simulation robustness. This functionality
provides a way to fine-tune scaling of individual variables in a model. It is especially
helpful for initial conditions convergence and maintaining a minimum step size.

Enable or Disable System Scaling by Nominal Values

Using system scaling based on nominal values is a best practice for Simscape models
because it improves simulation robustness. Therefore, when you create a new model,
scaling by nominal values is enabled by default.

System scaling by nominal values is controlled by the Normalize using nominal values
configuration parameter.

1 In the Simulink Toolstrip at the top of the model window, open the Modeling tab and
click Model Settings. The Configuration Parameters dialog box opens.

2 In the Configuration Parameters dialog box, in the left pane, select Simscape. The
right pane displays the Normalize using nominal values check box:

» Ifthe check box is selected, the model provides the scaling information to the
solver based on the specified nominal values. To view, add, and edit the value-unit
pairs for the model, click the Specify nominal values button next to the
Normalize using nominal values check box.

» Ifthe check box is cleared, the scaling by nominal values is disabled.
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Possible Sources of Nominal Values and Their Evaluation
Order

The scaling of each variable is determined by its nominal value and physical units.
Nominal values can come from different sources:

Block — You can specify nominal value and unit as variable declaration attributes in a
Simscape component file underlying the block. These attributes translate into block
parameters x_nominal_ value and x_nominal unit (where x is the variable name).
You can also override these values on individual blocks in the model by setting the
corresponding block parameter x nominal specify to 'on' and supplying different
values for x_nominal value and x nominal_unit. These parameters are not
visible in the block dialog box, but you can use either the Property Inspector or

set paramand get param functions to view and change their values. For more
information, see “Modify Nominal Values for a Block Variable” on page 6-34.

Model — In absence of a nominal value specified for the block, a variable uses the
nominal value for the commensurate physical unit specified in the model table. All
models have a default table of nominal values and units (factory default). To view, add,
and edit the value-unit pairs for the model, click the Specify nominal values button
next to the Normalize using nominal values check box. For more information, see
“Specify Nominal Value-Unit Pairs for a Model” on page 6-31.

Derived — If the model table of nominal values does not contain a row for a unit
commensurate with the physical unit of a variable, then the nominal value for this
variable is derived from fundamental dimensions. For example, if the variable's initial
value is in 1bf, and there is no entry in the table for force, but the table contains

{10, 'lbm'}, {12, 'ft'}, and {2, 'min'}, then the nominal value for that variable is
{10*12/272, 'lbm*ft/min"~2"'}.

Fixed — Event variables, top-level model inputs, and Simscape Multibody™ variables
cannot be scaled according to nominal values.

The Variable Viewer in advanced configuration shows the nominal value and unit for each
variable, along with the source. For more information, see “Variable Viewer” on page 7-

25.

Specify Nominal Value-Unit Pairs for a Model

All models have a default table of nominal values and units (factory default). To view, add,
and edit the value-unit pairs for a model:
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In the Simulink Toolstrip at the top of the model window, open the Modeling tab and
click Model Settings. The Configuration Parameters dialog box opens.

In the Configuration Parameters dialog box, in the left pane, select Simscape.
Make sure the Normalize using nominal values check box is selected.

Click the Specify nominal values button next to the Normalize using nominal
values check box.

The model table of nominal values opens in a new window. It contains all the value-
unit pairs currently defined for the model.
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5

B

- Model nominal values

Mominal values for model: ssc_de.., — O

Add new or edit existing value-unit pairs for the model.

Maominal value

Unit

1

A

bar

cm®2

cm®3fs

k/kg

kW

M*m

QK

| | Cancel

[

Apply

To edit a value-unit pair, select the corresponding cell and enter the new value or

unit.
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6 To add a new value-unit pair, in the top toolbar of the window containing the table,

click “* . This action adds a new empty row at the bottom of the table. Select the
cells in this row and enter the nominal value and unit for the new value-unit pair.

To delete a value-unit pair, select the corresponding row and click =

8 When finished editing the table, click OK. Table data is saved when you save the
model.

Modify Nominal Values for a Block Variable

Each variable in a block has three associated block parameters (where x is the variable
name):

* x nominal specify — Lets you override the system default nominal value for
variable x in this particular block. The default parameter value is 'off', in which
case the variable nominal value is determined according to the evaluation order
described in “Possible Sources of Nominal Values and Their Evaluation Order” on page
6-31. Set this parameter to 'on' to use the x_nominal value and x _nominal unit
parameter values for scaling.

* x nominal value — Ifthe x nominal specify parameter is setto 'on’', then this
value, in conjunction with the nominal unit parameter, determines the scaling of
variable x in this particular block. The parameter value must be a numeric value,
specified as a character vector. The default parameter value is '1"'.

* x_nominal unit —Ifthe x_nominal specify parameteris setto 'on’, then this
unit, in conjunction with the nominal value parameter, determines the scaling of
variable x in this particular block. The parameter value must be a valid physical unit
name, specified as a character vector. The unit must be commensurate with the unit
specified for the initial value of the variable. The default unit is the same as for the
initial value.

Note Nominal value and unit can be specified as variable declaration attributes in a
Simscape component file underlying the block. For more information, see “Nominal Value
and Unit for a Variable”. In this case, the nominal value and unit parameters for that
variable get their default values from the variable declaration attributes.

These parameters are not visible in the block dialog box, but you can use set param and
get param functions to view and change their values.
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For example, to change the nominal value and unit for variable i (current) for an
individual block, select this block in the model and type:

set param(gcb,'i nominal specify','on')
set param(gcb,'i nominal value',b '10')
set param(gcb,'i nominal unit', 'mA")

This sequence of commands overrides the default nominal value for the block variable
and sets it to 10 mA.

To perform the same actions using the Property Inspector:

1 Select the block in the model.

2 In the Simulink Toolstrip at the top of the model window, on the Modeling tab, click
the arrow on the far right of the Design section. In the General gallery, click
Property Inspector.

3 In the Property Inspector pane showing the block properties, expand the Variables
node, and then expand the nodes for the Current variable.

Property Inspector [ 4
Capacitor: Capacitor

Settings Description

Parameters
* Variables
¥ Current
hd |:| Initial {Using Default Settings)
Priority Mone
Value oA
[] Mominal (Using Default Settings)
Voltage
Capacitor voltage

Logging

4  Select the check box next to Nominal. This action is equivalent to setting the
i nominal specify parameterto 'on’.

6-35



6 Model Simulation

5 Once the Nominal check box is selected, its Value field becomes editable. Enter 10
and select mA from the unit drop-down list.

Property Inspector [ I
Capacitor: Capacitor

Settings Description

Parameters
“ Variables
» Current
hd |:| Initial {Using Default Settings)
Pricrity MNone
Value o] A
b H Nominal {Overriding Default Settings)
Value 10 | mA
Voltage
Capacitor voltage
Logging

See Also

variables

More About

. “Variable Viewer” on page 7-25
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Frequency and Time Simulation Mode

In this section...

“Speeding Up Model Simulation” on page 6-37
“Variable Initialization for Frequency-and-Time Simulation” on page 6-38
“Limitations” on page 6-38

“Perform Sinusoidal Steady-State Analysis of a Model” on page 6-38

Frequency and time simulation mode speeds up simulation of systems with a single
nominal frequency by letting you increase the maximum step size for variable solvers.
This mode also lets you perform phasor analysis of such systems by using the blocks in
the Periodic Operators sublibrary of the Physical Signals library.

Depending on your task, you can switch between time and frequency-and-time simulation
modes without modifying the model. For example, use the time simulation mode to study

transient effects, and then switch to the frequency-and-time mode to perform the phasor

analysis of a model.

Speeding Up Model Simulation

Frequency-and-time equation formulation is intended for linear and linear parameter-
varying (LPV) systems. It speeds up the simulation using a variable-step solver because
the solver step size is no longer limited by the period of the nominal frequency.

The frequency-and-time simulation mode is based on changing the equation formulation
for a physical network with a nominal frequency w, by dividing its variables into two
categories:

* Time variables, which vary slowly relative to the nominal period 21m/w,

* Frequency variables, which are sinusoidal and represent forced response at the
nominal frequency, x = dy + a,cos(wgt) + bysin(wyt)

In time simulation mode, the solver step size is typically limited to a small fraction of a
period of the nominal frequency. In frequency-and-time simulation mode, the
representation of frequency, or fast, variables as sinusoids allows the variable solver to
take much larger steps. The speeding-up effect is especially pronounced in complex
machine systems that use three-phase Simscape Electrical™ blocks.
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When you run a model in frequency-and-time simulation mode, the software automatically
detects the nominal frequency and determines which of the variables are fast (frequency)
and which are slow (time).

To benefit from improved performance, the time variables in the system should have slow
dynamics. If time variables have time constants comparable to, or smaller than, the
nominal frequency period, frequency-and-time simulation of such a system will be slow
(due to the large number of timesteps required to resolve these dynamics) and possibly
inaccurate. In such cases, use the time simulation mode instead.

Variable Initialization for Frequency-and-Time Simulation

Variable initialization for frequency-and-time equation formulation follows these rules:
» For time variables and algebraic frequency variables, initialization targets and
priorities are preserved.

* For dynamic frequency variables, initialization priority is switched to None because
the solver is using the sinusoidal steady-state approximation for these variables.

Limitations

Frequency-and-time equation formulation is intended for systems with a single nominal
frequency. In other words:

* The model must have at least one sinusoidal source in its physical network.

* In case of multiple sinusoidal sources, they must all operate at the same frequency.

* Blocks outside the physical network, such as a Sine Wave block, are not considered
valid sinusoidal sources.

If you try to run a frequency-and-time simulation on a model that does not meet the above
criteria, you get an error message.

Perform Sinusoidal Steady-State Analysis of a Model

This example shows how you can deploy different simulation modes on the same model,
depending on the type of analysis you want to perform.

The transmission line model used in this example is built from 50 identical blocks, each
block representing a single T-section segment. For more information, see “Transmission
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Line”. The model has one sinusoidal source (AC Voltage) and operates at a nominal
frequency 200 MHz, which makes it a good candidate for frequency-and-time simulation.

1

1 | Sensor |
- o !
AC Voltage -.2" 51 52 53 54 55 Load
c } ~

o
200 MHz

Open the Transmission Line example model by typing ssc_transmission line in
the MATLAB Command Window.

Expand the Voltage Sensor subsystem, which consists of a Voltage Sensor block, a
Solver Configuration block, and a PS-Simulink Converter block connected to the
scope.

Voltage

1
21—
1
21—
14
24—
i
23—

—)

OQutput (V)

Transmission Line

1. Plot voltages along line (see code)

2. Explore simulation results using sscexplore
3. Open transmission line component library

4. Learn more about this example

To analyze the transient behavior of the model, run it in the time simulation mode.

Open the Solver Configuration block dialog box and verify that the Equation
formulation parameter is set to Time. Simulate the model.
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4. Output (V) — | X
File  Tools View Simulation Help o

@- OP® | = AL FA-

Ready Sample based T=5e-08

You can observe the transmission delay from the simulation results.
To perform the phasor analysis, switch to frequency-and-time simulation mode.

Open the Solver Configuration block dialog box and set the Equation formulation
parameter to Frequency and time. Simulate the model.
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<
File  Tools View Simulation Help o

Q- 4OP® |- |a- Q- FA-

Ready Sample based T=5e-08

Notice that in frequency-and-time mode the simulation starts in sinusoidal steady
state.

To determine the amplitude and phase of the base frequency, connect the PS
Harmonic Estimator (Amplitude, Phase) block to the voltage sensor output. Add the

respective scopes.
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AC Voltage é“) 51 52 53 54
10w = =

=
200 MHz |
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24—
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24—
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24—
7]
o
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Output (V)
e
L 1 ’"‘—I_D Amplitude

Transmission Line L il —LD"—’@

1. Plot voltages along line (see code)
2. Explore simulation results using sscexplore

3. Open transmission line component library
4. Learn more about this example

Phase

5 Open the PS Harmonic Estimator (Amplitude, Phase) block dialog box and set the
Base frequency parameter to 200 MHz, to match the nominal frequency of the
model. Also set the Minimum amplitude for phase detection parameter unit to V,
to match the unit of the input signal.

6 Double-click the PS-Simulink Converter block connected to port A of the PS
Harmonic Estimator (Amplitude, Phase) block. Set the Output signal unit
parameter to V.

7 Simulate the model.
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4 Amplitude — | X

File  Tools View Simulation Help o

@- OP® | = AL FA-

Ready Sample based T=5e-08
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4. Phase — O >

- |

File  Tools View Simulation Help

G- 40P ®| - aQ-E-|FH-

Ready Sample based T=5e-0&

8 The logged simulation data for frequency variables contains subnodes that let you
examine the variable instantaneous value, amplitude, phase, and offset data

separately.
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4. Simscape Results Explorer: ssc_transmission_line — ] e
File Edit View Insert Tools Desktop Window Help ~
o 2|08 kE

EAEAE

ssc_transmission_line

AC Voltage
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T
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“{] phase
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) 051
T-10
Statistics for selected node:

Description: Capacitor valtage Ar
Unit conversion: absolute
Base Frequency: 200000000 5 | | | |
Number of time steps: 340 o 05 1 15 2
Number of logged variables: 1

Number of logged zero crossing signals: 0

Time (s) %108
Source: T-1 v

Note If you use the workflow of live-streaming the data to Simulation Data Inspector,
the recorded simulation data does not contain these subnodes. To view the additional

subnodes for frequency variables, clear the Record data in Simulation Data
Inspector check box and rerun the simulation.

See Also

PS Harmonic Estimator (Amplitude, Phase) | Solver Configuration

More About

“Phasor-Mode Simulation Using Simscape Components” (Simscape Electrical)
“About the Simscape Results Explorer” on page 12-30
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In this section...

“Troubleshooting Tips and Techniques” on page 6-46
“System Configuration Errors” on page 6-47
“Numerical Simulation Issues” on page 6-49

“Initial Conditions Solve Failure” on page 6-50

“Transient Simulation Issues” on page 6-51

Troubleshooting Tips and Techniques

Simscape simulations can stop before completion with one or more error messages. This
section discusses generic error types and error-fixing strategies. You might find the
previous section, “How Simscape Simulation Works” on page 6-7, useful for identifying
and tracing errors.

If a simulation failed:

* Review the model configuration. If your error message contains a list of blocks, look at
these blocks first. Also look for:

*  Wrong connections — Verify that the model makes sense as a physical system. For
example, look for actuators connected against each other, so that they try to move
in opposite directions, or incorrect connections to reference nodes that prevent
movement. In electrical circuits, verify polarity and connections to ground.

* Wrong units — Simscape unit manager offers great flexibility in using physical
units. However, you must exercise care in specifying the correct units, especially in
the Simulink-PS Converter and PS-Simulink Converter blocks. Start analyzing the
circuit by opening all the converter blocks and checking the correctness of
specified units.

* Try to simplify the circuit. Unnecessary circuit complexity is the most common cause
of simulation errors.

* Break the system into subsystems and test every unit until you are positive that the
unit behaves as expected.

* Build the system by gradually increasing its complexity.

MathWorks recommends that you build, simulate, and test your model incrementally.
Start with an idealized, simplified model of your system, simulate it, verify that it works
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the way you expected. Then incrementally make your model more realistic, factoring in
effects such as friction loss, motor shaft compliance, hard stops, and the other things that
describe real-world phenomena. Simulate and test your model at every incremental step.
Use subsystems to capture the model hierarchy, and simulate and test your subsystems
separately before testing the whole model configuration. This approach helps you keep
your models well organized and makes it easier to troubleshoot them.

System Configuration Errors

* “Missing Solver Configuration Block” on page 6-47

» “Extra Fluid or Gas Properties Block” on page 6-47

+ “Missing Reference Block” on page 6-48

* “Basic Errors in Physical System Representation” on page 6-48

Missing Solver Configuration Block

Each topologically distinct Simscape block diagram requires exactly one Solver
Configuration block to be connected to it. The Solver Configuration block specifies the
global environment information and provides parameters for the solver that your model
needs before you can begin simulation.

If you get an error message about a missing Solver Configuration block, open the
Simscape Utilities library and add the Solver Configuration block anywhere on the circuit.

Extra Fluid or Gas Properties Block

If your model contains hydraulic elements, each topologically distinct hydraulic circuit in
a diagram requires a Custom Hydraulic Fluid block (or Hydraulic Fluid block, available
with Simscape Fluids block libraries) to be connected to it. These blocks define the fluid
properties that act as global parameters for all the blocks connected to the hydraulic
circuit. If no hydraulic fluid block is attached to a loop, the hydraulic blocks in this loop
use the default fluid. However, more than one hydraulic fluid block in a loop generates an
error.

Similarly, more than one Thermal Liquid Settings (TL) block in a thermal liquid circuit,
Two-Phase Fluid Properties (2P) block in a two-phase fluid circuit, or Gas Properties (G)
block in a gas circuit generates an error.

If you get an error message about too many domain-specific global parameter blocks
attached to the network, look for an extra Hydraulic Fluid block, Custom Hydraulic Fluid
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block, Thermal Liquid Settings (TL) block, Two-Phase Fluid Properties (2P) block, or Gas
Properties (G) block and remove it.

Missing Reference Block

Simscape libraries contain domain-specific reference blocks, which represent reference
points for the conserving ports of the appropriate type. For example, each topologically
distinct electrical circuit must contain at least one Electrical Reference block, which
represents connection to ground. Similarly, hydraulic conserving ports of all the blocks
that are referenced to atmosphere (for example, suction ports of hydraulic pumps, or
return ports of valves, cylinders, pipelines, if they are considered directly connected to
atmosphere) must be connected to a Hydraulic Reference block, which represents
connection to atmospheric pressure. Mechanical translational ports that are rigidly
clamped to the frame (ground) must be connected to a Mechanical Translational
Reference block, and so on.

If you get an error message about a missing reference block, or node, check your system
configuration and add the appropriate reference block based on the rules described
above. The missing reference node diagnostic messages include information about the
particular block and variable that needs a reference node. This is especially helpful when
multiple domains are involved in the model. For more information and examples of best
modeling practices, see “Grounding Rules” on page 1-36.

Basic Errors in Physical System Representation

Physical systems are represented in the Simscape modeling environment as Physical
Networks according to the Kirchhoff's generalized circuit laws. Certain model
configurations violate these laws and are therefore illegal. There are two broad violations:

* Sources of domain-specific Across variable connected in parallel (for example, voltage
sources, hydraulic pressure sources, or velocity sources)

* Sources of domain-specific Through variable connected in series (for example, electric
current sources, hydraulic flow rate sources, force or torque sources)

These configurations are impossible in the real world and illegal theoretically. If your
model contains such a configuration, upon simulation the solver issues an error followed
by a list of blocks, as shown in the following example.
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Example

The model shown in the following illustration contains two Ideal Translational Velocity
Sources connected in parallel. This produces a loop of independent velocity sources, and
the solver cannot construct a consistent system of equations for the circuit.
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Configuration Refarance

When you try to simulate the model, the solver issues an error message with links to the
Ideal Translational Velocity Source and Ideal Translational Velocity Sourcel blocks. To fix
the circuit, you can either replace the two velocity sources by a single Ideal Translational
Velocity Source block, or add a Translational Damper block between them.

Numerical Simulation Issues

* “Dependent Dynamic States” on page 6-49
* “Parameter Discontinuities” on page 6-50

Numerical simulation issues can be either a result of certain circuit configurations or of
parameter discontinuities.

Dependent Dynamic States

Certain circuit configurations can result in dependent dynamic states, or the so-called
higher-index differential algebraic equations (DAEs). Simscape solver can handle
dependencies among dynamic states that are linear in the states and independent of time
and inputs to the system. For example, capacitors connected in parallel or inductors
connected in series will not cause any problems. Other circuit configurations with
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dependent dynamic states, in certain cases, may slow down the simulation or lead to an
error when the solver fails to initialize.

Problems may occur when dynamic states have a nonlinear algebraic relationship. An
example is two inertias connected by a nonlinear gear constraint, such as an elliptical
gear. In case of simulation failure, the Simscape solver may be able to identify the
components involved, and provide an error message with links to the blocks and to the
equations within each block.

Parameter Discontinuities

Nonlinear parameters, dependent on time or other variables, may also lead to numerical
simulation issues as a result of parameter discontinuity. These issues usually manifest
themselves at the transient initialization stage (see “Transient Simulation Issues” on page
6-51).

Initial Conditions Solve Failure

The initial conditions solve, which solves for all system variables (with initial conditions
specified on some system variables), may fail. This has several possible causes:

» System configuration error. In this case, the Simulation Diagnostics window usually
contains additional, more specific, error messages, such as a missing reference node,
or a warning about the component equations, followed by a list of components
involved. See “System Configuration Errors” on page 6-47 for more information.

* Dependent dynamic state. In this case, the Simulation Diagnostics window also may
contain additional, more specific, error messages, such as a warning about the
component equations, followed by a list of components involved. See “Dependent
Dynamic States” on page 6-49 for more information.

* The residual tolerance may be too tight to produce a consistent solution to the
algebraic constraints at the beginning of simulation. You can try to increase the
Consistency Tolerance parameter value (that is, relax the tolerance) in the Solver
Configuration block.

If the Simulation Diagnostics window has other, more specific, error messages, address
them first and try rerunning the simulation. See also “Troubleshooting Tips and
Techniques” on page 6-46.
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Transient Simulation Issues

* “Transient Initialization Not Converging” on page 6-51
» “Step-Size-Related Errors — Dependent States — High Stiffness” on page 6-51

Transient initialization happens at the beginning of simulation (after computing the initial
conditions) or after a subsequent event, such as a discontinuity (for example, when a hard
stop hits the stop). It is performed by fixing all dynamic variables and solving for
algebraic variables and derivatives of dynamic variables. The goal of transient
initialization is to provide a consistent set of initial conditions for the next transient solve
step.

Transient Initialization Not Converging

Error messages stating that transient initialization failed to converge, or that a set of
consistent initial conditions could not be generated, indicate transient initialization
issues. They can be a result of parameter discontinuity. Review your model to find the
possible sources of discontinuity. See also “Troubleshooting Tips and Techniques” on page
6-46.

You can also try to decrease the Consistency Tolerance parameter value (that is, tighten
the tolerance) in the Solver Configuration block.

Step-Size-Related Errors — Dependent States — High Stiffness

A typical step-size-related error message may state that the system is unable to reduce
the step size without violating the minimum step size for a certain number of consecutive
times. This error message indicates numerical difficulties in solving the Differential
Algebraic Equations (DAEs) for the model. This might be caused by dependent dynamic
states (higher-index DAEs) or by the high stiffness of the system. You can try the
following:

» Tighten the solver tolerance (decrease the Relative Tolerance parameter value in the
Configuration Parameters dialog box)

» Specify a value, other than auto, for the Absolute Tolerance parameter in the
Configuration Parameters dialog box. Experiment with this parameter value.

» Tighten the residual tolerance (decrease the Consistency Tolerance parameter value
in the Solver Configuration block)

* Increase the value of the Number of consecutive min step size violations allowed
parameter in the Configuration Parameters dialog box (set it to a value greater than
the number of consecutive step size violations given in the error message)
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* Review the model configuration and try to simplify the circuit, or add small parasitic
terms to your circuit to avoid dependent dynamic states. For more information, see
“Numerical Simulation Issues” on page 6-49.
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Limitations

In this section...

“Sample Time and Solver Restrictions” on page 6-53

“Algebraic Loops” on page 6-53

“Unsupported Simulink Tools and Features” on page 6-54
“Restricted Simulink Tools” on page 6-55

“Simulink Tools Not Compatible with Simscape Blocks” on page 6-56

“Code Generation” on page 6-57

Sample Time and Solver Restrictions

The default sample times of Simscape blocks are continuous. You cannot simulate
Simscape blocks with discrete solvers using the default sample times.

If you switch to a local solver in the Solver Configuration block, the states of the
associated physical network become discrete. If there are no continuous Simulink or
Simscape states anywhere in a model, you are free to use a discrete solver to simulate the
model.

You cannot override the sample time of a nonvirtual subsystem containing Simscape
blocks.

Algebraic Loops

A Simscape physical network should not exist within a Simulink algebraic loop. This
means that you should not directly connect an output of a PS-Simulink Converter block to
an input of a Simulink-PS Converter block of the same physical network.

For example, the following model contains a direct feedthrough between the PS-Simulink
Converter block and the Simulink-PS Converter block (highlighted in magenta). To avoid
the algebraic loop, you can insert a Transfer Function block anywhere along the
highlighted loop.
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A better way to avoid an algebraic loop without introducing additional dynamics is shown
in the modified model below.
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Unsupported Simulink Tools and Features
Certain Simulink tools and features do not work with Simscape software:
sim

» Exporting a model to a format used by an earlier version (Simulation > Save >
Previous Version) is not supported for models containing Simscape blocks.
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The Simulink Profiler tool does not work with Simscape models.

Physical signals and physical connection lines between conserving ports are different
from Simulink signals. Therefore, the Viewers and Generators Manager tool and the
signal label functionality are not supported.

Restricted Simulink Tools

Certain Simulink tools are restricted for use with Simscape software:

You can use the Simulink set param and get param commands to set or get
Simscape block parameters, if the parameters correspond to fields in the block dialog
box. MathWorks® does not recommend that you use these commands to find or change
any other block parameters.

If you make changes to block parameters at the command line, run your model first
before saving it. Otherwise, you might save invalid block parameters. Any block
parameter changes that you make with set param are not validated unless you run
the model.

Simscape blocks accept Simulink.Parameter objects as parameter values in
get paramand set param, within the restrictions specified here.

Enabled subsystems can contain Simscape blocks. Always set the States when
enabling parameter in the Enable dialog to held for the subsystem's Enable port.

Setting States when enabling to reset is not supported and can lead to fatal
simulation errors.

You can place Simscape blocks within nonvirtual subsystems that support continuous
states. Nonvirtual subsystems that support continuous states include Enabled
subsystems and Atomic subsystems. However, physical connections and physical
signals must not cross nonvirtual boundaries. When placing Simscape blocks in a
nonvirtual subsystem, make sure to place all blocks belonging to a given Physical
Network in the same nonvirtual subsystem.

Nonvirtual subsystems that do not support continuous sample time blocks (such as If
Action, For Iterator, Function-Call, Triggered, While Iterator, and so on) cannot contain
Simscape blocks.

An atomic subsystem with a user-specified (noninherited) sample time cannot contain
Simscape blocks.

Simulink configurable subsystems work with Simscape blocks only if all of the block
choices have consistent port signatures.
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When using operating point to save and restore simulations of models, you cannot
make any changes to the Simscape blocks in the model between the time at which you
save the ModelOperatingPoint object and the time at which you restore the
simulation using the Model0peratingPoint object. For more information, see
“Limitations of Saving and Restoring Operating Point” (Simulink).

This is an extension of the Simulink limitation prohibiting structural changes to the
model between these two points in time. Changes to Simscape block parameters can
cause equation changes and result in changes to the state representation. Therefore,
modifying parameters of Simscape blocks between saving and restoring the SimState
is not allowed.

Linearization with the Simulink linmod function or with equivalent Simulink Control
Design™ functions and graphical interfaces is not supported with Simscape models if
you use local solvers.

Model referencing is supported, with some restrictions:

» All Physical connection lines must be contained within the referenced model. Such
lines cannot cross the boundary of the referenced model subsystem in the
referencing model.

* The referencing model and the referenced model must use the same solver.

You cannot create Simulink signal objects directly on the PS-Simulink Converter block
outputs. Insert a Signal Conversion block after the output port of a PS-Simulink
Converter block and specify the signal object on the output of the Signal Conversion
block instead.

Simulink Tools Not Compatible with Simscape Blocks

Some Simulink tools and features do not work with Simscape blocks:

Execution order tags do not appear on Simscape blocks.

Simscape blocks do not invoke user-defined callbacks.

You cannot set breakpoints on Simscape blocks.

Reusable subsystems cannot contain Simscape blocks.

You cannot use the Simulink Fixed-Point Tool with Simscape blocks.

The Report Generator reports Simscape block properties incompletely.
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Code Generation

Code generation is supported for Simscape physical modeling software and its family of
add-on products. However, there are restrictions on code generated from Simscape
models.

* Code reuse is not supported.

* Encapsulated C++ code generation is not supported.

* Tunable parameters are not supported.

* Run-time parameter inlining ignores global exceptions.

* MaxStackSize is not supported.

* Simulation of Simscape models on fixed-point processors is not supported.

* Block diagnostics in error messages are not supported. This means that if you get an
error message from simulating generated code, it does not contain a list of blocks
involved.

* Conversion of models or subsystems containing Simscape blocks to S-functions is not
supported.

“Code Generation” describes Simscape code generation features. “Restricted Simulink
Tools” on page 6-55 describes limitations on model referencing.

There are variations and exceptions as well in the code generation features of the add-on
products based on Simscape platform. For details, see documentation for individual add-
on products.

Code Generation and Fixed-Step Solvers
Most code generation options for Simscape models require the use of fixed-step Simulink

solvers. This table summarizes the available solver choices, depending on how you
generate code.

Code Generation Option Solver Choices

Accelerator mode Variable-step or fixed-step
Rapid Accelerator mode

Simulink Coder™ software: RSim Target* Variable-step or fixed-step

Simulink Coder software: Targets other than Fixed-step only
RSim
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* For the RSim Target, Simscape software supports only the Simulink solver module. In
the model Configuration Parameters dialog box, see the Code Generation: RSim
Target: Solver selection menu. The default is automatic selection, which might fail to
choose the Simulink solver module.
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Variable Initialization and Operating
Points

* “Block-Level Variable Initialization” on page 7-2

* “Set Priority and Initial Target for Block Variables” on page 7-5

» “Initialize Variables for a Mass-Spring-Damper System” on page 7-7

* “Variable Viewer” on page 7-25

* “Using Operating Point Data for Model Initialization” on page 7-37

» “Initialize Model Using Operating Point from Logged Simulation Data” on page 7-42
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Block-Level Variable Initialization

7-2

In this section...

“Initializing Block Variables for Model Simulation” on page 7-2
“Variable Initialization Priority” on page 7-3

“Suggested Workflow” on page 7-4

Initializing Block Variables for Model Simulation

At the beginning of simulation (t = 0), the solver computes the initial conditions to
determine the simulation starting point, as described in “Initial Conditions Computation”
on page 6-10. Finding a solution means finding initial values for all system variables. You
can affect the initial conditions computation by block-level variable initialization, that is,
by specifying the priority and target initial values for certain variables on the Variables
tab of the respective block dialog boxes.

The values you specify during block-level variable initialization are not the actual values
of the respective variables, but rather their target values at the beginning of simulation (¢
= 0). Depending on the results of the solve, some of these targets may or may not be
satisfied.

The solver tries to find a solution that:

» Exactly satisfies all the model equations
» Exactly satisfies all the high-priority targets

* Approximates the low-priority targets as closely as possible (as a result, some of the
low-priority targets might be satisfied exactly, the others are approximated)

If the solver cannot find a solution that exactly satisfies all the high-priority targets, it
issues a warning and enters the second stage of the solve process, where it tries to find a
solution by approximating both the high-priority and the low-priority targets as closely as
possible.

If you have selected the Start simulation from steady state check box in the Solver
block dialog box, the solver attempts to find the steady state (when the system variables
are no longer changing with time). If the steady-state solve succeeds, the state found is
some steady state (within tolerance), but not necessarily the state expected from the
given initial conditions. In other words, if simulation starts from steady state, even the
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high-priority variable targets might no longer be satisfied at the start of simulation.
However, if the model has more than one steady state, the variable targets you specify
can affect which steady-state solution is selected by the solver.

After you initialize the block variables and prior to simulating the model, you can open the
Variable Viewer to see which of the variable targets have been satisfied. The Variable
Viewer displays the actual initial values of the variables obtained as a result of the solve,
along with the variable target values, priority, and other information about the variable.
For details, see “Variable Viewer” on page 7-25.

Variable Initialization Priority

During block-level variable initialization, you specify the variable beginning value, unit,
and the initialization priority. The priority can be one of the following:

* None — If a variable has priority of none, the initialization algorithm starts at the
beginning value for this variable but does not remember this value as it finds the
solution for the system of equations. The solver does not try to satisfy any specific
initial value for a variable with no priority.

* Low — If a variable has low priority, the beginning value becomes a target for the
algorithm and the algorithm tries to stay close to the target. The solver tries to
approximate the target value of this variable as closely as possible when finding a
solution. Depending on the results of the solve for high-priority variables, some of the
low-priority targets might be met exactly, the others are approximated.

* High — If a variable has high priority, the beginning value becomes a target for the
algorithm and the algorithm tries to meet the target exactly. The solver tries to find a
solution where the actual initial values of all high-priority variables exactly satisfy
their target values.

The default initialization priority, beginning value, and unit for each of the block variables
come from the underlying Simscape component file. For each individual block in your
model, you can override these default settings by opening the Variables tab of the block
dialog box, selecting the Override check box next to a variable name and specifying your
own values for that variable.

When you specify too many high-priority targets for system variables, it is possible to
over-specify your model. In this case, the solver might not be able to find a solution that
exactly satisfies all the high-priority targets, or even fail to find a solution altogether. For
an example of how you can deal with over-specification by using the Variable Viewer and
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changing the variable priority and targets, see “Initialize Variables for a Mass-Spring-
Damper System” on page 7-7.

For detailed information on how to specify variable priority and targets in block dialog
boxes, see “Set Priority and Initial Target for Block Variables” on page 7-5.

Suggested Workflow

1 Using the Variables tab of the respective block dialog boxes, specify the variable
targets for initialization, by setting the priority, target values, and units for block
variables as required by your model.

2 Open and refresh the Variable Viewer to see which of the initial targets have been
satisfied. Although the viewer does not simulate the model, it runs the simulation for
0 seconds to initialize it, and therefore the model must be in an executable state.

3 Ifinitialization fails, or you are not satisfied with the results, iterate by changing the
block variable target values and priority, then refreshing the viewer.

4  When satisfied with initialization, run the simulation to see the results.

See Also

More About

. “Set Priority and Initial Target for Block Variables” on page 7-5

. “Initialize Variables for a Mass-Spring-Damper System” on page 7-7
. “Variable Viewer” on page 7-25
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Set Priority and Initial Target for Block Variables

When you open the Variables tab of a block dialog box, it lists all the public variables
specified in the underlying component file, along with priority, beginning (target) value,
and unit. For example, if you add a Translational Spring block to your model, double-click
it to open its dialog box, and then click the Variables tab, it looks like this:

"k Block Parameters: Translational Spring @
Translational Spring it

The block represents an ideal mechanical linear spring.

Connections R and C are mechanical translational conserving ports. The block positive direction is from port R to
port C. This means that the force is positive if it acts in the direction from R to C.

Source code

m

Settings

Farameters

Variables

Override Variable Priority Beginning Value Unit
Velocity None ~ |0 m/s -
Force None ~ |0 M -
Deformation None = |0 m ]
1 m b
[ OK ] | Cancel | | Help | Apply

For details on these variables and their usage in the block equations, click the Source
code link in the block dialog box to view the underlying Simscape source file.

Note The Source code link is available for all the Foundation library blocks that have a
Variables tab. Blocks from the add-on products, like Simscape Electrical or Simscape
Fluids, do not have a Source code link in the block dialog box. See the block reference
page for information on relevant equations and specific initialization considerations.

To specify the initial deformation of the spring, select the Override check box next to the
Deformation variable, to indicate that you are overriding the default values. Select the
initialization priority for the variable, by setting its Priority drop-down to High, Low, or
None. Type a new number into the Beginning Value field and change the unit, if desired.
The Unit drop-down lists contains all the units defined in the unit registry that are
commensurate with the one specified in the variable declaration. In the following dialog
box, Deformation is specified as a high-priority variable with the initial target of 20 mm.
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"k Block Parameters: Translational Spring @
Translational Spring it

The block represents an ideal mechanical linear spring.

Connections R and C are mechanical translational conserving ports. The block positive direction is from port R to
port C. This means that the force is positive if it acts in the direction from R to C.

Source code

m

Settings

Farameters

Variables

Override Variable Priority Beginning Value Unit
[l Velocity None ~ |0 m/s -
(] Force None ~ |0 M -
£l Deformation High = |20 mm ]
1 m b
[ 0K ] I Cancel I I Help I Apply

If you clear the Override check box next to a variable name, its Priority, Beginning
Value, and Unit fields switch back to defaults specified in the component file. However, if
you select the check box again, these fields will retain their last specified value for when
they were overridden.

Note The variables included in Variables settings are run-time configurable by default.
You can tune a block-level variable-initialization target value between simulation runs if
you specify the target value using a variable that you save to the MATLAB workspace.

For more information, see “Run-Time Configurability for Block-Level Variable Initialization
Target Values” on page 9-4.

See Also

More About

. “Initialize Variables for a Mass-Spring-Damper System” on page 7-7
. “Block-Level Variable Initialization” on page 7-2
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Initialize Variables for a Mass-Spring-Damper System

This example shows how you can use block variable initialization, and how it affects the
simulation results of a simple mechanical system.

The model is a classical unforced mass-spring-damper system, with the oscillations of the
mass caused by the initial deformation of the spring.

Create and Set Up the Model

1

Create a simple mass-spring-damper system. Use the Mass, Translational Spring,
Translational Damper, Mechanical Translational Reference, Ideal Translational
Motion Sensor, PS-Simulink Converter, Solver Configuration, and Scope blocks, and
connect them as shown in the following illustration.

0 i

Mass Ideal Translational
Motion Sensor

3 i h_—’@
Translational Spring Translational Damper PS-Simulink

Paosition

1] II.J Converter1
flx)=0 ||=

Solver

Configuration

= b@

PE-Simulink Velocity
Converter

Mechanical
Translational
Reference

Prepare the model for simulation. On the top menu bar of the model window, select
Simulation > Model Configuration Parameters. On the Solver pane of the
Configuration Parameters dialog box, set Solver to ode23t (mod.stiff/
Trapezoidal) and Max step size to 0. 2. Also adjust the Simulation time to be
between 0 and 2 seconds, by setting Stop time to 2.0.

Specify the initial deformation of the spring. Double-click the Translational Spring
block. In the block dialog box, click the Variables tab, and then select the check box
next to the Deformation variable. Change its Priority to High. Change the
Beginning Value to 0.1. Leave the Unit unchanged as m.
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“& Block Parameters: Translational Spring @
Translational Spring
The block represents an ideal mechanical linear spring.

Connections R and C are mechanical translational conserving ports. The block positive direction is from port R to
port C. This means that the force is positive if it acts in the direction from R to C.

m

Source code
Settings

Parameters | Variables

Override Variable Priority Beginning Value Unit
Velocity |N0ne - | 0 m/s -
Force |N0ne v|D N -
v Deformation |High - | 0.1 m -
i —,,, : =
[ OK ] | Cancel | | Help | Apply

4  Adjust the initial position of the sensor, to compensate for the spring deformation.
Double-click the Ideal Translational Motion Sensor block and set its Initial position
parameter value to 0.1 m as well. This way, when you simulate the model, mass
oscillations center around 0.

5 Simulate the model.
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Open the Variable Viewer. In the model window, on the Apps tab, under Physical
Modeling, click Simscape Variable Viewer.
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The Translational Spring variable x, in the bottom row, has high priority and the
target value of 0.1 m. This is the Deformation variable that you have just set up in
the block dialog box. Its actual start value matches its target value, and therefore its
Status column displays a green circle.

The other high-priority variable in this model is the position, x, of the Ideal
Translational Motion Sensor block, which is set inside the component file because it
is necessary for the correct operation of the sensor. Its actual start value also
matches its target value, and its Status column also displays a green circle.

The rest of the variables in the model do not have initialization priority specified,
therefore their Status column also displays green circles. The overall status at the
bottom of the Variable Viewer window displays a green circle as well, and says that
all the variable targets are satisfied.
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Change Initialization Targets

You can now see how specifying different variable targets affects system initialization and

simulation results.

1

to High, and enter a beginning value of 10. Keep the unit m/s.

Specify the initial velocity of the mass. Double-click the Mass block, go to the
Variables tab, select the check box next to the Velocity variable, change its Priority

“& Block Parameters: Mass @
Mass i
The block represents an ideal mechanical translational mass.

The block has one mechanical translational conserving port. The block positive direction is from its port to the
reference point. This means that the inertia force is positive if mass is accelerated in positive direction. =
Source code
Settings
Veriabls
Override Variable Priority Beginning Value Unit
v Velocity High = (10 m/s -
Force Mone - |0 M | .
4 n 3
[ 0K ] | Cancel | | Help | Apply

When you change variable priorities and targets or adjust the block parameters, the
results in the Variable Viewer are not updated automatically. Instead, the Refresh
button displays a warning symbol (yellow triangle), and the timestamp at the bottom
of the viewer window turns red to indicate that the data in the viewer does not reflect

the latest model changes.
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Refresh the Variable Viewer by clicking @ .
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You can see that the solver has found a different initial solution, which satisfies your
variable targets for spring deformation and mass velocity. The Status column
displays green circles, and the overall status at the bottom of the Variable Viewer
window also displays a green circle and says that all the variable targets are
satisfied.

Notice that when you refreshed the Variable Viewer, the scopes turned blank. This
happens because solver runs the simulation for 0 seconds to find the initial solution
and display it in the Variable Viewer.

Rerun the simulation and examine the Velocity and Position scope windows, to see
the effect of the new initial value for mass velocity on the simulation results.
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Deal with Over-Specification

As you specify additional variable targets, sometimes it is possible to over-specify the
constraints.
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Double-click the Translational Damper block, go to the Variables tab, select the
check box next to the Force variable, change its Priority to High, and enter a
beginning value of 200. Keep the unit N.

==l

-

"4 Block Parameters: Translational Damper
Translational Damper
The block represents an ideal mechanical translational viscous damper.

Connections R and C are mechanical translational conserving ports, with R representing the damper rod, while C
is associated with the damper case. The block positive direction is from port R to port C.

m

Source code

Settings

Variables
Override Variable Priority Beginning Value Unit
[l Velocity None ~ |0 m/s -
£l Force High  ~|200 M -]
4 I N 2
OK ] [ Cancel ] [ Help Apply

Refresh the Variable Viewer.
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The overall status at the bottom of the Variable Viewer window now displays a red
square and says that the solver is unable to satisfy all the high-priority variable
targets. There are red squares in the Status column for the two high-priority
variables with targets not satisfied, as well as for their parent blocks.

Notice that the solver has been able to find a solution for model initialization. If you
rerun the simulation, it runs without errors and you can see the new simulation
results.
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However, the Variable Viewer shows that the model initialization solution does not
satisfy your target values for block variables. This happens because placing high-
priority constraints on all three elements of the mass-spring-damper system results in
a conflict. You can resolve the over-specification issue by relaxing the priority of some
of the conflicting variable targets.
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3 Double-click the Translational Damper block again, go to the Variables tab, and
change the priority of the Force variable to Low.

"4 Block Parameters: Translational Damper @
Translational Damper it
The block represents an ideal mechanical translational viscous damper.

Connections R and C are mechanical translational conserving ports, with R representing the damper rod, while C
is associated with the damper case. The block positive direction is from port R to port C. L

Source code
Settings

Farameters

Override Variable Priority Beginning Value Unit
[l Velocity 0 m/s -
kil Force m 200 N -

4 | i b

Variables

[ 0K ][ Cancel H Help Apply

4 Refresh the Variable Viewer.
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The overall status at the bottom of the Variable Viewer window now displays a yellow
triangle and says that all the high-priority targets are satisfied, but some of the low-
priority targets are not satisfied. There are now two yellow triangles in the status
column: one for the low-priority force variable f and one for its parent block,
Translational Damper.

Essentially, the solution found in this case is the same as when you previously
specified high-priority target for the mass velocity on page 7-0 , and the simulation
results are the same.
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5 Another way to deal with over-specification is to keep the high priority on the damper
force and relax the priority on mass initial velocity. Double-click the Translational
Damper block again, go to the Variables tab, and change the priority of the Force
variable back to High. Then double-click the Mass block, go to the Variables tab,
and change the priority of the Velocity variable to Low.
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" Block Parameters: Mass

Mass

The block represents an ideal mechanical translational mass.

The block has one mechanical translational conserving port. The block positive direction is from its port to the
reference point. This means that the inertia force is positive if mass is accelerated in positive direction.

Source code

Settings

Farameters

Variables

m

Override Variable Priority Beginning Value Unit
7] Velocity Low ¥ m/s -
4 1 | +
0K ] [ Cancel ] [ Help Apply

Refresh the Variable Viewer.
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Again, the Variable Viewer status says that all the high-priority targets have been
satisfied and that some of the low-priority targets are not satisfied. However, because
you changed the variable priorities, the solver now tried to satisfy the initial force on
the damper rather than the mass velocity, and the solution is different in this case, as
are the simulation results.
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See Also

More About

. “Block-Level Variable Initialization” on page 7-2
. “Set Priority and Initial Target for Block Variables” on page 7-5
. “Variable Viewer” on page 7-25
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Variable Viewer

In this section...

“About Variable Viewer” on page 7-25

“Advanced Configuration” on page 7-28

“Switching Between Tree View and Flat View” on page 7-30
“Useful Filtering Techniques” on page 7-32

“Saving Viewer Configuration” on page 7-33

“Link to Block Diagram” on page 7-33

“Interaction with Model Updates and Simulation” on page 7-34

About Variable Viewer

Prior to simulating the model, you can use the Variable Viewer to check the results of the
initial conditions computation for the model and to see which of the block-level variable
initialization targets have been satisfied. The Variable Viewer displays the variable
priority and target values, where specified, along with the actual initial values for all the
variables obtained as a result of the solve.

To open the Variable Viewer, in the model window, on the Apps tab, under Physical
Modeling, click Simscape Variable Viewer.

Note If you open a model, and then open the Variable Viewer before simulating the
model, then the viewer does not contain any data. The Refresh button displays a warning
symbol ( @ ), and a message at the top of the viewer window tells you to click the
Refresh button to populate the viewer with data.
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The Variable Viewer is a table, its rows listing all the blocks in the model and all the
public variables under each block, and the columns providing the initialization status,
priority, target and actual start values, and other information for each variable.

By default, the Variable Viewer opens in basic configuration, unless you specified another
configuration as a preferred one. (For information on specifying a preferred
configuration, see “Saving Viewer Configuration” on page 7-33.) In basic configuration,
the Variable Viewer has the following columns:

Name Description

Status Initialization status of each variable, can be one of:

* Green circle — Displayed for variables with initialization targets
satisfied, and also for all variables with no initialization priority.

* Yellow triangle — Displayed for low-priority variables if the target
is not satisfied.

* Red square — Displayed for high-priority variables if the target is
not satisfied.

* Red cross — If initial condition solve fails, displayed for variables
that could not be initialized.

* Gray rectangle — Displayed when status is not available. This can
happen, for example, if model initialization failed, or if the viewer
was left open during diagram update. For more information, see
“Interaction with Model Updates and Simulation” on page 7-34.
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Name Description

Priority Variable initialization priority, as specified in the block dialog box or
in the underlying component file. For more information, see “Set
Priority and Initial Target for Block Variables” on page 7-5 and
“Variable Priority for Model Initialization”. If the variable has no
initialization priority (None or priority.none), then this field is
empty.

Target Initial target value for a high-priority or low-priority variable. If the
variable has no initialization priority, then this field is empty.

Start The actual initial value of the variable computed by the solver.

Unit The variable base unit, common for all the values (Target, Prestart,

and Start). Simscape unit manager automatically converts all the
values as needed. For example, if you specified the target Beginning
Value in the block dialog box as 20 and the Unit as mm, the Variable
Viewer displays the Target as 0.2 and Unit as m.

A downward-pointing arrow next to a column name indicates that you can filter the table
rows based on their value in this column. For more information on the filtering options,
see “Useful Filtering Techniques” on page 7-32.

The Variable Viewer toolbar buttons perform the following actions:

@

]

Displays the data in the Variable Viewer in tree view, with variable nodes grouped
under the parent port, block, and subsystem nodes. This is the default view.

Displays the data in the Variable Viewer in flat view, to minimize the number of rows
in the table. In flat view, the rows for parent nodes are not shown, and the table

contains just one row per variable, with the Name column including the complete
path to the variable from the model root. If the Variable Viewer is in flat view, the
buttons that expand and collapse nodes are disabled.

Expands all nodes, showing all variables under each block name. This button is
== available only if the Variable Viewer is in tree view.
R Collapses all variables under each block name. You can then expand the block nodes
"= individually to see the variables under this block. This button is available only if the
Variable Viewer is in tree view.
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@ Recomputes the initial conditions for the model and refreshes the values displayed
in the viewer. Use this button after adjusting the block parameter values, changing
variable priorities and targets, or updating the block diagram. If the data in the
Variable Viewer is out of sync with the model, he Refresh button displays a warning

symbol ( @ ), and the timestamp at the bottom of the viewer window turns red. For
more information, see “Interaction with Model Updates and Simulation” on page 7-
34,

% Clears all the column filtering options and displays all the rows in the table. For
more information, see “Useful Filtering Techniques” on page 7-32.

) Shows the Variable Viewer in its default, basic, configuration, with only the following
columns displayed: Status, Priority, Target, Start, and Unit.

i Shows the Variable Viewer in advanced configuration, with all the columns
displayed. Use this view for troubleshooting your model, for example, if the model
initialization failed.

- Saves the current Variable Viewer configuration. For more information, see “Saving
" Viewer Configuration” on page 7-33.

Advanced Configuration

In most cases, the default Variable Viewer configuration contains sufficient data for
viewing the variable targets and verifying the model initialization results. However, if the
solver is unable to satisfy all the high-priority variable targets, or if the model
initialization fails, the advanced Variable Viewer configuration might provide additional
data that can help you troubleshoot your model.

To switch to the advanced configuration, click i in the Variable Viewer toolbar.
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In advanced configuration, the Variable Viewer displays the following additional columns:

Name

Description

Prestart

The value of the variable that the solver uses at the beginning of the
initial conditions solve process. For variables with no override of
initialization priority and targets, the prestart values come from the
variable declaration in the underlying component file. If the
initialization process fails, these values can help you determine the
reason (for example, a prestart value of 0 for a variable used as a
denominator in a model equation). If a variable has an undesirable
prestart value, specify a better value as a low-priority (or no-priority)
initialization target, to make the solver start iterations from a
different point.

Eliminated

These variables are eliminated by the software prior to numerical
integration and are not used in solving the system. Prestart values for
these variables have no effect on the system solution. However, you
can set the initialization priority and targets on these variables, in
which case their targets will be represented in terms of the variables
that are retained by the solver.
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Name

Description

Determined

The values of these variables depend on the system inputs, or their
values are predetermined based on the analysis of equations.
Therefore, specifying initialization priority and targets for these
variables has little or no impact on system solution. Also, if you
specify a high-priority target for a predetermined variable, the solver
most likely will not be able to satisfy this target but will spend extra
time trying to find a second-stage solution.

Differential

Time derivatives of these variables appear in equations. These
variables add dynamics to the system and can produce independent
states. Therefore, these variables are more likely to require high
initialization priority.

Representation

If frequency-and-time simulation mode is turned on, indicates how the
solver marks the variables: Frequency ("fast") or Time ("slow"). For
more information, see “Frequency and Time Simulation Mode” on
page 6-37. In regular simulation, all variables are marked Time.

Nominal

Nominal value of the variable. For more information, see “System
Scaling by Nominal Values” on page 6-30.

Nominal unit

Physical unit associated with the nominal value of the variable. For
more information, see “System Scaling by Nominal Values” on page 6-
30.

Nominal source

Source of the nominal value and unit: Block, Model, Derived, or
Fixed. For more information, see “Possible Sources of Nominal Values
and Their Evaluation Order” on page 6-31.

You can change the default order of columns by clicking a column heading and dragging
it, while holding down the mouse button, to the desired location. You can also hide
columns by right-clicking their headers and selecting Hide This Column from the

context menu, or clearing the check mark next to a column name. Clicking [ or R in
the Variable Viewer toolbar restores the default basic or advanced layout, respectively.

Switching Between Tree View and Flat View

You can control the number of rows in the Variable Viewer by switching between the tree
view (the default) and the flat view. By default, the Variable Viewer opens in tree view,
with variable nodes grouped under the parent port, block, and subsystem nodes.
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Therefore, the Variable Viewer table contains the rows for the parent nodes (ports,
blocks, and subsystems) in addition to the rows that correspond to all the public
variables. Only the rows that represent variables contain data such as targets and actual
values. All rows display a status, with the status of a parent node being determined by the
status of its children variables: if all the children are green, then the row for the parent
node also displays a green circle in its Status column.

For example, in the Variable Viewer table below, the first row represents the Ideal
Translational Motion Sensor block, the second row — port C of this block, and only the
third row contains the data for the actual variable v (velocity at port C).
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To switch to the flat view, click =l in the Variable Viewer toolbar.
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In flat view, the rows for parent nodes are not shown, and the table contains just one row
per variable, with the Name column including the complete path to the variable from the
top-level model. For example, the first row of the Variable Viewer table in flat view
represents the same variable v (velocity at port C of the Ideal Translational Motion
Sensor block), and the Name column includes the names of its parents and shows the
path to the variable. Flat view makes the Variable Viewer table more compact.

If the Variable Viewer is in flat view, the buttons that expand and collapse nodes are
disabled.

To switch back to the tree view, click =l in the Variable Viewer toolbar.

Useful Filtering Techniques

A downward-pointing arrow next to a column name indicates that you can filter the table
rows based on their value in this column.

To filter the rows, click the arrow, and then select or clear the check boxes in the drop-
down list to indicate which rows you want to be displayed, based on their value. Selecting

A1l clears all the filters for that column. To clear all filters for all columns, click " in
the Variable Viewer toolbar.
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For example, filtering on the Priority column values (selecting only the check boxes for
HIGH and LOW) lets you view all the targets and actual values in a compact format, which
can be helpful for a large model.

You might also find the following filtering techniques useful in troubleshooting your
models:

+ Filter the Differential column on TRUE, to display only the rows for differential
variables. Time derivatives of these variables appear in equations. These variables add
dynamics to the system and can produce independent states, therefore these variables
are more likely to require high initialization priority.

* Filter the Determined column on TRUE, to verify that these variables have no
initialization priority. The values of these variables are either predetermined by the
equation analysis or depend on the system inputs, and therefore specifying
initialization priority and targets for these variables has little or no effect on model
initialization.

Saving Viewer Configuration

The Save Viewer Configuration button ( E ) in the Variable Viewer toolbar lets you
save the following configuration preferences:

» Variable Viewer view type (tree or flat)

* Visible columns

* Ordering of columns

* Filters applied for all columns (both visible and hidden)

* Sorting on a specific column

If you save viewer configuration, then the next time you open Variable Viewer, for this or

another model, it will open with the same configuration. This behavior is consistent with
saving other MATLAB preferences.

Link to Block Diagram

The Variable Viewer tool provides direct linking to the block diagram. This link lets you
highlight the appropriate block, or easily go from a variable listed in the Variable Viewer
to the Variables tab in the corresponding block dialog box, to modify the variable
priorities and targets.
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When you right-click in the Name column of any row in the Variable Viewer table, a
context menu opens with the following options:

* Go to block — Highlights the corresponding block in the block diagram, opening the
appropriate subsystem if needed. If the row represents a variable, highlights the
parent block for this variable.

* Open block dialog — Opens the corresponding block dialog box (for a variable, opens
the parent block dialog box). In the block dialog box, click the Variables tab to view or
modify the variable priorities and targets. If the selected row represents a subsystem,
this option is not available.
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Interaction with Model Updates and Simulation

Opening the Variable Viewer does not trigger an automatic update. For complex models,
computing initial values for all the variables can last several minutes, and unnecessary
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updates could lead to loss of productivity. You have to update the data explicitly by

clicking the Refresh button ( S ).

When you open the Variable Viewer, it gets populated with the data from the last
simulation. The status at the bottom of the viewer window displays the timestamp of its
last update. If you have modified the model since the viewer has last been updated, the

Refresh button displays a warning symbol ( @ ), and the timestamp at the bottom of the
viewer window turns red to indicate that the data in the viewer might not reflect the
latest model changes.

If you open a model, and then open the Variable Viewer before simulating the model, then
the viewer does not contain any data. The Refresh button displays a warning symbol
(yellow triangle), and a message at the top of the viewer window tells you to click the
Refresh button to populate the viewer with data.

The Variable Viewer computes the actual initial values of the variables by running the
simulation for 0 seconds. Therefore:

* The model must be in an executable state when you refresh the viewer, otherwise you
get an error message.

» If the scopes are open, they turn blank every time you refresh the viewer. Rerun the
simulation to see the new results.

* Ifyou rerun the simulation while the Variable Viewer is open, the results in the viewer
are automatically refreshed when the simulation starts running.

» Ifyou change variable priorities and targets or adjust the block parameters, the
results in the viewer are not updated automatically. Refresh the viewer (by clicking

S in the Variable Viewer toolbar) to compute the new actual values of the variables
and update the status.

* Ifyou update block diagram (by selecting Modeling > Update Model in the model
window) while the Variable Viewer is open, the previously computed actual values
become unavailable and the Status column displays gray rectangles. The overall
status at the bottom of the Variable Viewer window is also not available. Refresh the
viewer to compute the new actual values of the variables and update the status.
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See Also

More About

. “Block-Level Variable Initialization” on page 7-2
. “Initialize Variables for a Mass-Spring-Damper System” on page 7-7
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Using Operating Point Data for Model Initialization

In this section...
“Using Operating Points to Initialize Model Variables” on page 7-37

“Suggested Workflow” on page 7-38

“Extracting Variable Initialization Data into an Operating Point” on page 7-38
“Manipulating Operating Point Data” on page 7-39

“Applying Operating Point Data to Initialize Model” on page 7-39

Using Operating Points to Initialize Model Variables

Block-level variable initialization lets you specify the priority and target for individual
block variables. You can also initialize variables for a whole model from the saved
operating point data.

You can use OperatingPoint objects to save sets of data necessary to initialize a model,
manipulate this data, and then use it to initialize another model, or the same model before
another simulation run. These sets of data contain a hierarchy of variable initialization
targets. Each target consists of a variable value, unit, and initialization priority, as
described in “Variable Initialization Priority” on page 7-3.

The OperatingPoint data hierarchy is a tree, with nodes corresponding to subsystems
and blocks in a model. At the lowest level of the data tree, inside the block nodes, are the
variable initialization targets for that block.

When you use an OperatingPoint to initialize a model, the solver matches the
OperatingPoint data hierarchy to the model hierarchy and applies the initialization
targets from the operating point to the respective model variables. If there is no variable
matching an operating point target, this target is ignored. After applying all the data from
the operating point, the solver performs model initialization as described in “Initial
Conditions Computation” on page 6-10.

After you initialize the variables and prior to simulating the model, you can open the

Variable Viewer to see which of the variable targets have been satisfied. For details, see
“Variable Viewer” on page 7-25.
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Suggested Workflow

1

Create an OperatingPoint object by extracting data from the model or from the
simulation log. For more information, see “Extracting Variable Initialization Data into
an Operating Point” on page 7-38.

Modify the operating point data, if needed, by changing, adding, or removing targets
and nodes. For more information, see “Manipulating Operating Point Data” on page
7-39.

When satisfied with the operating point data, apply it to initialize another model, or
the same model for another simulation run. For more information, see “Applying
Operating Point Data to Initialize Model” on page 7-39.

Extracting Variable Initialization Data into an Operating Point

You can create an OperatingPoint object by extracting data from an existing model or
from logged simulation data. For more information, see simscape.op.create.

You can extract variable initialization targets from a model in these ways:

Start values — Initialize the model and use the variable targets corresponding to the
Start values in the Variable Viewer.

Prestart values — Update the model and use the variable targets corresponding to the
Prestart values in the Variable Viewer.

Cached data — Extract cached values of variable targets from a model that has been
previously initialized or simulated. You can specify Start or Prestart values. This
method lets you save time by avoiding repeated initialization of the model if the data
that you want to extract has not changed.

Alternatively, you can simulate the model while logging simulation data, and then extract
variable targets from the simulation log at a specified time, t:

If the set of times recorded in the simulation data log contains an exact match for time
t, then the simscape.op.create function extracts these variable target values into
the operating point data.

If there is no exact match, but t is between the minimum and maximum times in the
simulation data log, then the function uses linear interpolation to determine the target
values.

If t is less than the minimum time, then the function extracts the first value for each
variable in the simulation data log.
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» If t is greater than the maximum time, then the function extracts the last value for
each variable in the simulation data log.

When you extract data from a model into an operating point, the elements in the data
hierarchy of the OperatingPoint object match the structure of the model. The
operating point data tree has nodes corresponding to subsystems and blocks in the
model, with variable initialization targets for each block at the lowest level of the data
tree hierarchy. Similarly, when you extract an operating point from logged simulation
data, the operating point data tree matches the data tree of the simulation log. For an
example, see “Find Relative Path to Block Node in Operating Point Data Tree”.

Manipulating Operating Point Data

You can create an empty OperatingPoint object, or populate it with the data extracted
from an existing model or from logged simulation data.

Once you create an OperatingPoint object, you can modify it in these ways:

* Add targets one-by-one. For an example, see “Add Element to an Operating Point”.

* Copy and insert elements. For an example, see “Copy Element from an Operating
Point”. You can then insert the copied element into another operating point using the
set function.

* Remove elements. For an example, see “Remove an Element from Operating Point
Data”.

* Rename or move elements. For an example, see “Rename Element to Match New
Block Name”.

* Merge operating points. For an example, see “Merge Two Operating Points”.

Applying Operating Point Data to Initialize Model

To initialize a model from an operating point:

1 Open the Configuration Parameters dialog box.

2  On the Simscape pane, select the Enable operating point initialization check
box.

3 In the Model operating point textbox, enter the name of the workspace variable
associated with an OperatingPoint object.
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@ Configuration Parameters: ssc_dcmotor/Configuration (Active)
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You can also use the equivalent command-line interface to set the model configuration
parameters:

* set param('model name','SimscapeUseOperatingPoints','on');
* set param('model name','SimscapeOperatingPoint', 'op name');

where model name is the name of the model and op_name is the name of the
OperatingPoint object.

See Also

simscape.op.OperatingPoint | simscape.op.Target

More About

. “Initialize Model Using Operating Point from Logged Simulation Data” on page 7-
42



See Also

“Variable Viewer” on page 7-25
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Initialize Model Using Operating Point from Logged
Simulation Data

This example shows how you can create an OperatingPoint object from logged

simulation data and then use this operating point to initialize the model for a subsequent
simulation run.

1  Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in
the MATLAB Command Window. This model has data logging enabled for the whole
model, with the Workspace variable name parameter set to
simlog ssc_dcmotor.

Load Torgue

]

vmta[ég g :/mj EE"“ . Step Input
_ v \__._,/ C

Motor
RPM

f(x)=0

DC Motor

2 Simulate the model to log the simulation data.
3 Examine the simulation results in the Motor RPM scope window.
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Initialize Model Using Operating Point from Logged Simulation Data
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File Tools  View  Simulation  Help k
G- BOP® - A FH-

10

Ready Sample bazed T=0.200

For the first 0.1 seconds, the motor has no external load, and the speed builds up to
the no-load value. Then at 0.1 seconds, the stall torque is applied as a load to the
motor shaft.

Create an operating point from logged simulation data at 0.1 seconds after the start
of simulation:

op simscape.op.create(simlog ssc_dcmotor, 0.1)

op =

OperatingPoint with children:
DC Motor

DC Voltage

ERef

Load Torque

MRRef Motor

MRRef Torque

Sensing
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5 Enable model initialization from operating point:
set param(gcs, 'SimscapeUseOperatingPoints', 'on');

This command is equivalent to selecting the Enable operating point initialization
check box in the Simscape pane of the Configuration Parameters dialog box.

6  Specify the name of operating point:
set param(gcs, 'SimscapeOperatingPoint','op');

This command is equivalent to entering op in the Model operating point textbox.
7 Simulate the model. The simulation now starts with the full no-load speed.

4 Mator RPM — d x
File Tools  View  Simulation  Help k
- Q0P ® = a-|C- 44

10

Ready Sample bazed T=0.200

See Also

More About
. “Log, Navigate, and Plot Simulation Data” on page 12-25
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See Also

“Using Operating Point Data for Model Initialization” on page 7-37
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* “Finding an Operating Point” on page 8-2

* “Linearizing at an Operating Point” on page 8-6

* “Linearize an Electronic Circuit” on page 8-12

* “Linearize a Plant Model for Use in Feedback Control Design” on page 8-22
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Finding an Operating Point

8-2

In this section...

“What Is an Operating Point?” on page 8-2
“Finding Operating Points in Physical Models” on page 8-3

What Is an Operating Point?

An operating point of a system is a dynamic configuration that satisfies design and use
requirements called operating specifications. You can express such operating
specifications as requirements on the system state x and inputs u. It is not always
possible to find a dynamic state that satisfies all operating conditions. Also, a system
might have multiple operating points satisfying the same requirements.

Operating points are essential for designing and implementing system controllers. You
can optimize a system at an operating point for performance, stability, safety, and
reliability.

The most important and common type of operating point is a steady state, where some or
all of the system dynamic variables are constant.

Using Operating Points for Linearization

An important motive for finding operating points is linearization, which determines the
system response to small disturbances at an operating point. Linearization results
influence the design of feedback controllers to govern dynamic behavior near the
operating point. A full linearization analysis requires one or more system outputs, y, in
addition to inputs.

See “Linearizing at an Operating Point” on page 8-6.
Example

A pilot flying an aircraft wants to find, for a given environment, a state of the aircraft
engine and control surfaces that produces level, constant-velocity, and constant-altitude
flight relative to the ground. The requirements of "level," "constant velocity," "constant
altitude," and "relative to the ground" constitute operating specifications. This operating
point is a steady state of the aircraft velocity, altitude, and orientation in space.
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Finding Operating Points in Physical Models

You have a number of ways to find an operating point in a Simscape model. You can
impose operating specifications and isolate operating points using Simscape and Simulink
features.

Tip To find a steady state, the Simscape steady-state solver is the most direct method.
For a comprehensive suite of operating point and linearization tools, MathWorks
recommends Simulink Control Design software.

To analyze operating points, you work with the full state vector of your model, which
contains:

* Simulink components, which can be continuous or discrete.

* Simscape components, which are continuous.

Whichever method that you choose to find an operating point, if you want to use it for
linearization, you must save the operating point information in the form of an operating
point object, a simulation time t,, or a state vector x; and input vector u,.

* “Simulating in Time to Search for an Operating Point” on page 8-3

* “Using the Simscape Initial Condition Solver” on page 8-4

* “Using Simulink Control Design Techniques to Find Operating Points” on page 8-4

» “Using Sources to Find Operating Points Not Recommended” on page 8-5

* “Simulink trim Function Not Supported with Simscape Models” on page 8-5

Simulating in Time to Search for an Operating Point

One way to identify operating points is to simulate your model and inspect its state x and
output y as a time series.

1 In your Simscape model, set up sensor outputs for whatever block outputs you want
to observe.

2 Connect Scope blocks, To Workspace blocks, or both, to your Simscape block outputs
to observe and record simulation behavior.

3 In the Data Import/Export pane of your model Configuration Parameters settings,
select the Time, States, and Output check boxes to record this simulation
information in your workspace.

8-3



8 Linearization and Trimming

8-4

Using the Simscape Initial Condition Solver

Simscape software provides two workflows to initialize a physical model. The first solves
for steady state, where all differential variables have zero derivative. Using this approach
you can search for multiple steady states with the steady-state solver by varying the
model inputs, parameters, and initial conditions. The second approach is to directly
specify initial conditions by specifying initialization priority and targets for block
variables. For more information on this approach, see “Variable Initialization”.

To use the first approach, enable the steady-state solver:
1 In each, some, or all of the physical networks in your Simscape model, open the
Solver Configuration block.

In each block dialog box, select the Start simulation from steady state check box.

In the model Configuration Parameters settings, on the Data Import/Export pane,
select the States check box to record the time series of x values in your workspace.

If you also have input signals u in the model, you can capture those inputs by
connecting To Workspace blocks to the input Simulink signal lines.

4 Close these dialog boxes and start simulation.

The first vector of values x(t=0) that you capture during simulation reflects the steady
state x, that the Simscape solver identified.

Tip Finding an initial steady state is part of the nondefault Simscape simulation
sequence. See “Initial Conditions Computation” on page 6-10.

You can simplify the initial steady-state computation by setting the simulation time to 0.
The simulation then solves for one time step only (time zero) and returns a single state
vector x(t=0).

Using Simulink Control Design Techniques to Find Operating Points

You can use Simulink Control Design software to find operating points for models with
Simscape components. Simulink Control Design provides both command-line and
graphical interfaces for finding and analyzing operating points.

For more information, see “Find Steady-State Operating Points for Simscape Models”
(Simulink Control Design).
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Using Sources to Find Operating Points Not Recommended

You can impose an operating specification on part of a Simscape model by inserting
source blocks from the Simscape Foundation Library. These impose specified values of
system variables in parts of the model. You can simulate and save the state vector.

However, you cannot obtain an operating point for the original system (without the source
blocks) by saving the state values from the model and then removing the source blocks. In
general, the number, order, and identity of state components change after adding and
removing Simscape blocks in a model.

Simulink trim Function Not Supported with Simscape Models

The Simulink trim function is not supported for models containing Simscape
components.



8 Linearization and Trimming

Linearizing at an Operating Point

8-6

In this section...

“What Is Linearization?” on page 8-6

“Linearizing a Physical Model” on page 8-8

What Is Linearization?

Determining the response of a system to small perturbations at an operating point is a
critical step in system and controller design. Once you find an operating point, you can
linearize the model about that operating point to explore the response and stability of the
system. To find an operating point in a Simscape model, see “Finding an Operating Point”
on page 8-2.

* “What Is a Linearized Model?” on page 8-6
* “Example” on page 8-7
* “Choosing a Good Operating Point for Linearization” on page 8-7

What Is a Linearized Model?

Near an operating point, you can express the system state x, inputs u, and outputs y
relative to that operating point in terms of x - x,, u - uy, and y - y,. For convenience, shift
the vectors by subtracting the operating point: x - x, = x, and so on.

If the system dynamics do not explicitly depend on time and the operating point is a
steady state, the system response to state and input perturbations near the steady state is
approximately governed by a linear time-invariant (LTI) state space model:

dx/dt = Ax + B-u
y = Cx + D-u.

The matrices A, B, C, D have components and structures that are independent of the
simulation time. A system is stable to changes in state at an operating point if the
eigenvalues of A are negative.

If the operating point is not a steady state or the system dynamics depend explicitly on
time, the linearized dynamics near the operating point are more complicated. The
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matrices A, B, C, D are not constant and depend on the simulation time t; , as well as the
operating point x; and u,.

Tip While you can linearize a closed system with no inputs or outputs and obtain a
nonzero A matrix, obtaining a nontrivial linearized input-output model requires at least
one input component in u and one output component in y.

Example

A pilot is flying, or simulating, an aircraft in level, constant-velocity, and constant-altitude
flight relative to the ground. A crucial question for the aircraft pilot and designers is: will
the aircraft return to the steady state if perturbed from it by a disturbance, such as a
wind gust — in other words, is this steady state stable? If the operating point is unstable,
the aircraft trajectory can diverge from the steady state, requiring human or automatic
intervention to maintain steady flight.

Choosing a Good Operating Point for Linearization

Although steady-state and other operating points (state x, and inputs u,) might exist for

your model, that is no guarantee that such operating points are suitable for linearization.
The critical question is: how good is the linearized approximation compared to the exact

system dynamics?

*  When perturbed slightly, a problematic operating point might exhibit strong
asymmetries, with strongly nonlinear behavior when perturbed in one direction and
smoother behavior in another.

* Small perturbations might result in a discontinuous change in a state value, making
the current state unsuitable for linear approximation.

Operating points with a strongly nonlinear or discontinuous character are not suitable for
linearization. You should analyze such models in full simulation, away from any
discontinuities, and perturb the system by varying its inputs, parameters, and initial
conditions. A common example is actuation systems, which should be linearized away
from any hard constraints or end stops.

Tip Check for such an unsuitable operating point by linearizing at several nearby
operating points. If the results differ greatly, the operating point is strongly nonlinear or
discontinuous.
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Linearizing a Physical Model

Use the following methods to create numerical linearized state-space models from a
model containing Simscape components.

Tip MathWorks recommends the Simulink Control Design product for linearization
analysis.

* “Independent Versus Dependent States” on page 8-8

* “Linearizing with Simulink Control Design Software” on page 8-9

* “Linearizing with the Simulink linmod and dlinmod Functions” on page 8-9
* “Linearizing with Simulink Linearization Blocks” on page 8-11

Independent Versus Dependent States

An important difference from basic Simulink models is that the states in a physical

network are not independent in general, because some states have dependencies on other

states through constraints.
* The independent states are a subset of system variables and consist of independent
(unconstrained) Simscape dynamic variables and other Simulink states.

» The dependent states consist of Simscape algebraic variables and dependent
(constrained) Simscape dynamic variables.

For more information on Simscape dynamic and algebraic variables, see “How Simscape
Simulation Works” on page 6-7.

The complete, unreduced LTI A, B, C, D matrices have the following structure.
* The A matrix, of size n_states by n_states, is all zeros except for a submatrix of
size n_ind by n_ind, where n_ind is the number of independent states.

* The B matrix, of size n_states by n_inputs, is all zeros except for a submatrix of
size n_ind by n_inputs.

* The C matrix, of size n_outputs by n _states, is all zeros except for a submatrix of
size n_outputs by n ind.

* The D matrix, of size n_outputs by n_inputs, can be nonzeros everywhere.
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Obtaining the Independent Subset of States

A minimal linearized solution uses only an independent subset of system states. From the
matrices A, B, C, D, you can obtain a minimal input-output linearized model with:

* Theminreal and sminreal functions from Control System Toolbox™ software
* Automatically with the Simulink Control Design approach

Linearizing with Simulink Control Design Software

Note The techniques described in this section require the Simulink Control Design
product.

You must use the features of this product on the Simulink lines in your model, not directly
on Simscape physical network lines or blocks.

This approach requires that you start with an operating point object saved from trimming
the model to an operating specification.

To linearize a model with an operating point object, use the linearize function,
customizing where necessary. The resulting state-space object contains the matrices A, B,
C, D.

You can also use the graphical user interface, through the Simulink Toolstrip: on the Apps
tab, under Control Systems, click Model Linearizer.

For more information on linearizing Simscape models using Simulink Control Design, see
“Linearize Simscape Networks” (Simulink Control Design).

Linearizing with the Simulink linmod and dlinmod Functions

You have several ways that you can use the Simulink functions 1inmod and dlinmod, and
the linearization results can differ depending on the method chosen. To use these
functions, you do not have to open the model, just have the model file on your MATLAB
path.

For more information about Simulink linearization, see “Linearizing Models” (Simulink).
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Tip If your model has continuous states, use Linmod. (Continuous states are the
Simscape default.) If your model has mixed continuous and discrete states, or purely
discrete states, use dlinmod.

Linearizing a model with the local solver enabled (in the Solver Configuration block) is
not supported.

Linearizing with Default State and Input

You can call Llinmod without specifying state or input. Enter Linmod( 'modelname') at
the command line.

With this form of 1inmod, Simulink linearization solves for consistent initial conditions in
the same way it does on the first step of any simulation. Any initial conditions, such as
initial offset from equilibrium for a spring, are set as if the simulation were starting from
the initial time.

1inmod allows you to change the time of externally specified signals (but not the internal
system dynamics) from the default. For this and more details, see the 1inmod function
reference page.

Linearizing with the Steady-State Solver at an Initial Steady State
You can linearize at an operating point found by the Simscape steady-state solver:

Open one or more Solver Configuration blocks in your model.

2 Select the Start simulation from steady state check box for the physical networks
that you want to linearize.

3 Close the Solver Configuration dialog boxes and save the modified model.
Enter linmod ( 'modelname') at the command line.

linmod linearizes at the first step of simulation. In this case, the initial state is also an
operating point, a steady state.

For more about setting up the steady-state solver, see the Solver Configuration block
reference page.

Linearizing with Specified State and Input — Ensuring Consistency of States

You can call Llinmod and specify state and input. Enter Linmod ( 'modelname' ,x0,u0)
at the command line. The extra arguments specify, respectively, the steady state x; and
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inputs u, for linearizing the simulation. When you specify a state to Linmod, ensure that
it is self-consistent, within solver tolerance.

With this form of 1inmod, Simulink linearization does not solve for initial conditions.
Because not all states in the model have to be independent, it is possible, though
erroneous, to provide linmod with an inconsistent state to linearize about.

If you specify a state that is not self-consistent (within solver tolerance), the Simscape
solver issues a warning at the command line when you attempt linearization. The
Simscape solver then attempts to make the specified x0 consistent by changing some of
its components, possibly by large amounts.

Tip You most easily ensure a self-consistent state by taking the state from some
simulated time. For example, by selecting the States check box on the Data Import/
Export pane of the model Configuration Parameters dialog box, you can capture a time
series of state values in a simulation run.

Linearizing with Simulink Linearization Blocks

You can generate linearized state-space models from your Simscape model by adding a
Timed-Based Linearization or Trigger-Based Linearization block to the model and
simulating. These blocks combine time-based simulation, up to specified times or internal
trigger points, with state-based linearization at those times or trigger points.

For complete details about these blocks, see their respective block reference pages.

Note If your model contains PS Constant Delay or PS Variable Delay blocks, or custom
blocks utilizing the delay operator in the Simscape language, MathWorks recommends
that you linearize the model by using the Timed-Based Linearization or Trigger-Based
Linearization block and simulating the model for a time period longer than the specified
delay time.
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Linearize an Electronic Circuit

This example shows how to linearize a model of a nonlinear bipolar transistor circuit and
create a Bode plot for small-signal frequency-domain analysis.

Depending on the software you have available, use the appropriate sections of this
example to explore various linearization and analysis techniques.

Explore the Model

To open the Nonlinear Bipolar Transistor example model, type
ssc_bipolar nonlinear in the MATLAB Command Window.

! !
R1 % R3 %
47 kOhm 1800 Ohm

+ |__
cz
1e-06 F

C

) DC Voitage
10V

Monlinear NPN

Transistor RL

100 kOhm
R4
600 Ohm

Nonlinear Bipolar Transistor

1. Plot voltages at transistor terminals (see code)

2. Linearize circuit to view frequency response (see code)
3. Explore simulation results using sscexplore
4. Learn more about this example

The model represents a single-transistor audio amplifier. The transistor is an NPN bipolar
device, and as such has a nonlinear set of current-voltage characteristics. Therefore the
overall behavior of the amplifier is dependent on the operating point of the transistor. The
transistor itself is represented by and Ebers-Moll equivalent circuit implemented using a
masked subsystem. The circuit has a sinusoidal input test signal with amplitude 10 mV
and frequency 1 kHz. The Load Voltage scope displays the resulting collector output
voltage after the DC is filtered out by the output decoupling capacitor.
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R1 and R2 set the nominal operating point, and the small signal gain is approximately set
by the ratio R3/R4. The decoupling capacitors C1 and C2 have a capacitance of 1uF, to
present negligible impedance at 1 kHz.

The model is configured for linearization. You can quickly generate and view the small-
signal frequency response by clicking the Linearize circuit hyperlink in model
annotation. To view the MATLAB script that generates the frequency response, click the
next hyperlink in that annotation, see code. This documentation provides background
information and alternative ways of linearization based on the software you have.

In general, to obtain a nontrivial linearized input-output model and generate a frequency
response, you must specify model-level inputs and outputs. The Nonlinear Bipolar
Transistor model meets this requirement in two ways, depending on how you linearize:

* Simulink requires top- or model-level input and output ports for linearization with
linmod. The Nonlinear Bipolar Transistor model has such ports, marked u and y.

« Simulink Control Design software requires that you specify input and output signal
lines with linearization points. The specified lines must be Simulink signal lines, not
Simscape physical connection lines. The Nonlinear Bipolar Transistor model has such
linearization points specified. For more information on using Simulink Control Design
software for trimming and linearization, see documentation for that product.

Open the Solver Configuration block and see that the Start simulation from steady
state check box is selected. Then open the Load Voltage scope and run the simulation to
see the basic circuit behavior. The transistor junction capacitance initial voltages are set
to be consistent with the bias conditions defined by the resistors. The output is a steady
sinusoid with zero average, its amplitude amplified by the transistor and bias circuit.
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i )

4 Load Yoltage E'@

File Tools View Simulation Help o

- AP = Q-0 FF-

Ready T=0.010

To see the circuit relax from a nonsteady initial state, in the Solver Configuration block,
clear the Start simulation from steady state check box and click OK. With the Load
Voltage scope open, simulate again. In this case, the output voltage starts at zero because
the transistor junction capacitances start with zero charge.
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4 Load Yoltage E'@

File Tools View Simulation Help o

- AP = Q-0 FF-

Ready T=0.010

You can get a more comprehensive understanding of the circuit behavior and how it
approaches the steady state by long-time transient simulation. Increase the simulation
time to 1 s and rerun the simulation. The circuit starts from its initial nonsteady state, and

the transistor collector voltage approaches and eventually settles into steady sinusoidal
oscillation.
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4 Load Yoltage E'@

File Tools View Simulation Help o

- AP = Q-0 FF-

Ready T=1.000

Open the Solver Configuration block, select the Start simulation from steady state
check box (as it was when you first opened the model), and click OK. Change the
simulation time back to .01 s and rerun the simulation.

Linearize with Steady-State Solver and linmod Function

In this example, you:

1 Use the Simscape steady-state solver to find an operating point
2 Linearize the model using the Simulink 1inmod function
3  Generate the Bode plot using a series of MATLAB commands

Open the Solver Configuration block and make sure the Start simulation from steady
state check box is selected. When you simulate the model with the Simscape steady-state
solver enabled, the circuit is initialized at the state defined by the transistor bias
resistors. This steady-state solution is an operating point suitable for linearization.



Linearize an Electronic Circuit

Note Also make sure that the Use local solver check box is cleared. Linearizing a model
with the local solver enabled is not supported.

To linearize the model, type the following in the MATLAB Command Window:
[a,b,c,d]=1linmod('ssc_bipolar nonlinear');

You can alternatively call the Linmod function with a single output argument, in which
case it generates a structure with states, inputs, and outputs, as well as the linear time-
invariant (LTI) model.

The state vector of the Nonlinear Bipolar Transistor model contains 17 components. The
full model has one input and one output. Thus, the LTI state-space model derived from
linearization has the following matrix sizes:

* ais17-by-17
* bis17-by-1
* cis 1-by-17
e dis 1-by-1

To generate a Bode plot, type the following in the MATLAB Command Window:

npts = 100; f = logspace(-2,10,npts); G = zeros(1l,npts);
for i=l:npts
G(i) = c*(2*¥pi*li*f(i)*eye(size(a))-a)™-1*b +d;
end
subplot(211), semilogx(f,20*loglO(abs(G)))
grid
ylabel('Magnitude (dB)"')
subplot(212), semilogx(f,180/pi*unwrap(angle(G)))
ylabel('Phase (degrees)')
xlabel('Frequency (Hz)')
grid
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Linearize with Simulink Control Design Software

Note To work through this section, you must have a Simulink Control Design license.

Simulink Control Design software has tools that help you find operating points and
returns a state-space model object that defines state names. This is the recommended

way to linearize Simscape models.

1 In the Simulink Toolstrip of the Nonlinear Bipolar Transistor model window, on the
Apps tab, under Control Systems, click Model Linearizer.

2 In the Linear Analysis Tool window, on the Linear Analysis tab, click the Bode plot

button.
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The linearization result "linsys1" is created in the Linear Analysis Workspace.

For more information on using Simulink Control Design software for trimming and
linearization, see the Simulink Control Design documentation.

Use Control System Toolbox Software for Bode Analysis

Note To work through this section, you must have a Control System Toolbox license.

You can use the built-in analysis and plotting capabilities of Control System Toolbox
software to analyze and compare Bode plots of different steady states.

First, use the Simulink 1inmod function to obtain the linear time-invariant (LTI) model.
[a,b,c,d]=1linmod('ssc_bipolar nonlinear');

Not all the states of the LTI model derived in this example are independent. Confirm this
by calculating the determinant of the a matrix, det (a). The determinant vanishes, which
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implies one or more zero eigenvalues. To analyze the LTT model, reduce the LTI matrices
to a minimal realization. Obtain a minimal realization using the minreal function.

[a®,b0,c0,d0] = minreal(a,b,c,d);
13 states removed.

Extracting the minimal realization eliminates 13 dependent states from the LTI model,
leaving four independent states. Analyze the control characteristics of the reduced a®,
b0, cO, dO LTI model using a Bode plot.

bode(a0®,b0,c0,d0) % Creates first Bode plot

The circuit with R1 changed from 47 to 15 kOhm has a different steady state and
response. Double-click the R1 block, change the Resistance value to 15 kOhm, and click
OK. Open the Load Voltage scope and simulate the model. The collector voltage is now no
longer amplified relative to the 10 mV AC source but attenuated.

i "

4 Load Yoltage EI@

File Tools VWiew Simulation Help &

G- 4O - Q-C-|FH-

Ready T=0.010

Produce the LTI model at the second steady state, reduce it to a minimal realization, and
superpose the second Bode plot on the first one.



See Also

[a R1,b R1,c R1l,d Rl]=linmod('ssc_bipolar nonlinear');

[a® R1,b0 R1,cO0 R1,d0 R1l] = minreal(a R1,b R1l,c R1l,d R1); % 13 states removed.
hold on % Keeps first Bode plot open

bode(a® R1,b0 R1,cO R1,d0 R1l) % Superposes second Bode plot on first
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For more information on using Control System Toolbox software for Bode analysis, see the
Control System Toolbox documentation.

See Also

Related Examples

. “Linearize a Plant Model for Use in Feedback Control Design” on page 8-22

More About
. “Finding Operating Points in Physical Models” on page 8-3
. “Linearizing a Physical Model” on page 8-8
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Linearize a Plant Model for Use in Feedback Control
Design

This example shows how you can linearize a hydraulic plant model to support control
system stability analysis and design.

Depending on the software you have available, use the appropriate sections of this
example to explore various linearization and analysis techniques.

Explore the Model

To open the Hydraulic Actuator with Digital Position Controller example model, type
ssc_hydraulic actuator digital control in the MATLAB Command Window.

Command
Signal
p 1

%‘ Signal 1 . .--. ol
FE)
Controller ransport | inearization I
‘ Delay VO points Hydraulic

Lf

Load

Actuator Position

Hydraulic Actuator with Digital Position Controller

1. Plot pressures in hydraulic cylinder (see code)
2. Linearize the hydraulic plant {see code)

3. Explore simulation results using sscexplore

4. Learn more about this example

The model represents a two-way valve acting in a closed-loop circuit together with a

double-acting cylinder. Double-click the Hydraulic Actuator subsystem to see the model
configuration.
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The controller is represented as a continuous-time transfer function plus a transport
delay that allows for computational time and a zero-order hold when implemented in
discrete time. The Linearization I/O points subsystem lets you easily break and restore
the feedback control loop by setting the base workspace variable ClosedLoop to 0 or 1,
respectively.

y2 u2

O—D
ut w1
Set to 1 for closed-loop
operation, and setto 0
when linearizing

You can quickly generate and view the small-signal frequency response by clicking the
Linearize hyperlink in model annotation. To view the MATLAB script that generates the
frequency response, click the next hyperlink in that annotation, see code. This
documentation provides background information and alternative ways of linearization
based on the software you have.

In general, to obtain a nontrivial linearized input-output model and generate a frequency
response, you must specify model-level inputs and outputs. The Hydraulic Actuator with
Digital Position Controller model meets this requirement in two ways, depending on how
you linearize:

* Simulink requires top- or model-level input and output ports for linearization with
linmod. The model has such ports, marked Inl and Outl.
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» Simulink Control Design software requires that you specify input and output signal
lines with linearization points. The specified lines must be Simulink signal lines, not
Simscape physical connection lines. The model has such linearization points specified.
For more information on using Simulink Control Design software for trimming and
linearization, see documentation for that product.

Open the Load Position scope and simulate the model in a normal closed-loop controller
configuration.

i

4 Load Position E'@

File Tools View Simulation Help N

Q'@@HDT E}v{i’lvm,,}}

Ready T=10.000

You can see that the model has a quasi-linear steady-state response between 2 and 3
seconds, when the two-way valve is open. Therefore, the state at 2.5 seconds is an
operating point suitable for linearization.
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Trim Using the Controller and Linearize with Simulink linmod
Function

1

Set the controller parameters.

To specify sample time for controller discrete-time implementation, type the following
in the MATLAB Command Window:

ts = 0.001;
To specify continuous-time controller numerator and denominator, type:

num
den

-0.5;
[1e-3 11;

Find an operating point by running closed-loop and selecting the state at 2.5 seconds
when the custom two-way valve is open.

To close the feedback loop, type:
assignin('base', 'ClosedLoop',1);

To simulate the model and save the operating point information in the form of a state
vector X and input vector U, type:

[t,x,y] = sim('ssc_hydraulic_actuator digital control');

idx = find(t>2.5,1);
X = x(idx,:); U = y(idx);

Linearize the model using the Simulink 1inmod function.

To break the feedback loop, type:

assignin('base', 'ClosedLoop',0);

To linearize the model, type:

[a,b,c,d] = linmod('ssc hydraulic actuator digital control',6X,U);
Close the feedback loop by typing:

assignin('base', 'ClosedLoop',1);

To generate a Bode plot with negative feedback convention, type the following in the
MATLAB Command Window:
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c=-c; d= -d;
npts = 100; w = logspace(-3,5,npts); G = zeros(1l,npts);
for i = 1l:npts
G(i) = c*(1li*w(i)*eye(size(a))-a)”™-1*b +d;
end
subplot(211), semilogx(w,20*loglO(abs(G)))
grid
ylabel('Magnitude (dB)"')
subplot(212), semilogx(w,180/pi*unwrap(angle(G)))
ylabel('Phase (degrees)"')
xlabel('Frequency (rad/s)')

grid
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Linearize with Simulink Control Design Software

Note To work through this section, you must have a Simulink Control Design license.

8-26



Linearize a Plant Model for Use in Feedback Control Design

Simulink Control Design software has tools that help you find operating points and
returns a state-space model object that defines state names. This is the recommended
way to linearize Simscape models.

1 In the Simulink Toolstrip of the Hydraulic Actuator with Digital Position Controller
model window, on the Apps tab, under Control Systems, click Model Linearizer.

2 Inthe Linear Analysis Tool, in the Operating Point drop-down list, select
Linearize At. Enter simulation snapshot time of 2.5 seconds and click OK.

3 Click the Bode plot button.

inear Analysis lool - ssc_hydraulic_actuator_digital_control - bode Flof -
4L Anal Tool hydraul tuator_digital trol - Bode Plot 1 [m] X
LINEAR ANALYSIS ESTIMATION PLOTS AND RESULTS BODE PLOT 1 2l & & & e
[ Load Se